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Abstract: The currently hyped expectation of personalized medicine is often associated with just achieving the
information technology led integration of biomolecular sequencing, expression and histopathological bioimaging
data with clinical records at the individual patients’ level as if the significant biomedical conclusions would be its
more or less mandatory result. It remains a sad fact that many, if not most biomolecular mechanisms that translate
the human genomic information into phenotypes are not known and, thus, most of the molecular and cellular data
cannot be interpreted in terms of biomedically relevant conclusions. Whereas the historical trend will certainly be
into the general direction of personalized diagnostics and cures, the temperate view suggests that biomedical
applications that rely either on the comparison of biomolecular sequences and/or on the already known
biomolecular mechanisms have much greater chances to enter clinical practice soon. In addition to considering the
general trends, we exemplarily review advances in the area of cancer biomarker discovery, in the clinically relevant
characterization of patient-specific viral and bacterial pathogens (with emphasis on drug selection for influenza and
enterohemorrhagic E. coli) as well as progress in the automated assessment of histopathological images. As
molecular and cellular data analysis will become instrumental for achieving desirable clinical outcomes, the role of
bioinformatics and computational biology approaches will dramatically grow.

Author summary: With DNA sequencing and computers becoming increasingly cheap and accessible to the
layman, the idea of integrating biomolecular and clinical patient data seems to become a realistic, short-term
option that will lead to patient-specific diagnostics and treatment design for many diseases such as cancer,
metabolic disorders, inherited conditions, etc. These hyped expectations will fail since many, if not most
biomolecular mechanisms that translate the human genomic information into phenotypes are not known yet and,
thus, most of the molecular and cellular data collected will not lead to biomedically relevant conclusions. At the
same time, less spectacular biomedical applications based on biomolecular sequence comparison and/or known
biomolecular mechanisms have the potential to unfold enormous potential for healthcare and public health. Since
the analysis of heterogeneous biomolecular data in context with clinical data will be increasingly critical, the role of
bioinformatics and computational biology will grow correspondingly in this process.
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When will genome sequences, expression profiles
and computer vision for bioimage interpretation
be routinely used in clinical medicine?
There is apparently no doubt for anyone that modern life

science research based on the new high-throughput tech-

nologies most prominently represented by genomic se-

quencing together with the increasingly powerful and, at

the same time, affordable information technology products

will dramatically change healthcare. The main idea behind

these expectations is that the new availability of data char-

acterizing the patients’ individuality at the level of genome,

biomolecules and gene/protein networks together with

evermore powerful diagnostic, mainly imaging tools at the

histological, anatomical and physiological levels allow ever

finer stratification of the patients’ conditions once the mo-

lecular data is integrated with clinical data and, finally, it

will lead to the design of personalized treatment regimes.

Unfortunately, the discussion in the media has become

hyped with expectations increasingly getting out of touch

with the progress that both biomedical science [1] and

healthcare at the ground can deliver in the short and

medium term. In this discussion and, to some extent, re-

view article, we try to analyze what are major trends in

computational biology and bioinformatics that support

the advance towards stratified and personalized medicine

and what are the fundamental and some of the proced-

ural barriers on the path towards the solution of major

healthcare problems such as infections, cancer, metabolic

and neurodegenerative diseases, familial disorders, etc.

The article is structured as follows: In the section The

hype around genomics and proteomics technologies in

the healthcare context and fundamental reasons calling

for a temperate view, we look into the general develop-

ments that fuel the expectations of revolutionary change

in health care and public health; we talk about several

roadblocks that have been removed on the path towards

personalized/stratified medicine and the possible role of

bioinformatics and computational biology in this process.

We also emphasize what are the reasons why many of

the expectations will not materialize in the short- to

medium-term time frame. Section Management of

innovation cycles of high-throughput technologies and

the role of bioinformatics in this process is dedicated to

issues that arise when bioinformaticians/computational

biologist actually penetrate into the actual health care

provision system under the condition when the applica-

tion of new computational analysis methods and evalu-

ation protocols is not really routine.

In sections Bioinformatics moving towards clinical on-

cology: biomarkers for cancer classification, early diag-

nostics, prognosis and personalized therapy (cancer

biomarkers), Sequence-structure-function relationships

for pathogenic viruses and bacteria and their role in com-

bating infections (infectious diseases) and Impact of

Bioimage Informatics on Healthcare (computerized

histopathology), we exemplarily discuss and partially re-

view the progress in application areas that have already

or will likely benefit in the near future from interaction

with bioinformatics/computational biology approaches.

Although often histologically similar, increasingly more

cancer subtypes are getting characterized at the level of

the specific, individual biomolecular mechanisms that

drive the growth of the tumor cell population and, thus,

are essentially understood as different diseases. Cancer

biomarkers are critical for diagnosis, classification, prog-

nosis and therapy progress evaluation in this concept

(section Bioinformatics moving towards clinical oncol-

ogy: biomarkers for cancer classification, early diagnos-

tics, prognosis and personalized therapy).

Due to their small genome and the possibility to suc-

cessfully deduce phenotype properties from mutations,

viral and bacterial pathogens are thankful objects for com-

putational biology analysis in the clinical context (in con-

trast to the situation with higher eukaryotes such as

human; section Sequence-structure-function relationships

for pathogenic viruses and bacteria and their role in com-

bating infections). As example, we review in depth the

clinically relevant characterization of patient-specific influ-

enza viral infections. We also show that genome analysis

of enterohemorrhagic E.coli allows selecting existing FDA

approved drugs for treatment.

In section Impact of Bioimage Informatics on Health-

care, we review advances in the automated assessment

of histopathological and, to a minor extent, other med-

ical images. Possibly, these developments in this area

might have a non-spectacular but a very profound im-

pact on health care delivery very soon since the pro-

blems to overcome are more of the engineering type and

not of fundamentally scientific origin.

The hype around genomics and proteomics technologies

in the healthcare context and fundamental reasons

calling for a temperate view

Several roadblocks towards the goal of stratified/perso-

nalized medicine have disappeared very recently. The

spectacular improvement of nucleic acid sequencing

technologies lead to a reduction in costs, both in time

and money, at a scale that can only be described as jaw-

dropping for the observer. Whereas the first full human

genome sequencing absorbed about 3 billion USD in the

USA alone and it took about a decade to be accom-

plished [2], recently offered machines such as Ion Pro-

ton™ Sequencer (Life Technology) or HiSeq™ 2500

(Illumina) [3] move these numbers rather close towards

1000 USD and a single day. And this appears not to be

the endpoint of the technology development with more

progress to be expected in the medium-term future.

Naturally, dreams about all kinds of sequencing
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applications, especially, in clinical contexts and with af-

fluent patients start sprouting. To note, the progress of

nucleic acid sequencing is just the most eye-catching; es-

sentially, it hides dramatic progress also in many other

areas and high-throughput technologies such as expres-

sion profiling, histopathological image processing, etc.

We need to acknowledge, that for life sciences, where,

historically, getting at least some verifiable, quantified

data for their biological system of study was a major dif-

ficulty and the setup of experiments and not the analysis

of the measurement absorbed most of the intellectual

capacity [4], the current deluge of quantified data is

really a game changer and puts theoretical analysis

detached from experimentation into general importance

for the field for the first time.

The second major change is in IT itself. The older

among the list of authors still remember their times as

PhD students when the access to mainframe machines

was cumbersome and heavily restricted and a good desk-

top computer with graphical interface in the late eight-

ies/early nineties had the price of a luxury sports car.

Today, for nominally the same money, one can equip

several research teams if not a small institute with com-

puter clusters (e.g., a 64 core computer trades for just

about 10000 USD), storage systems and network tools

that are more powerful than necessary for about 90% of

the tasks in computational biology. Thus, computing

and storage opportunities are essentially no longer the

limiting factor for life science research compared with

just a decade or even a few years ago.

The hype currently accumulating around the new op-

portunities with sequencing and other high-throughput

technologies, maybe, is sensed most directly in the

entrepreneurs’ and scientists’ comments compiled by

Bio-IT World at its WWW page dedicated to the 10th

anniversary of its own launch [5]. Although there are

some minority cautionary notes, one cannot get away

with the general impression that concluding from mo-

lecular data to clinically important statements is mainly

seen as a problem of the scale of data generation. It is

expected that the IT-centric efforts of integrating

patient-specific sequencing, expression, tissue imaging

data with clinical information (whatever might be the

exact meaning of this “data integration”; just putting

everything into one electronic database) will inevitably

lead to significant healthcare outcomes in terms of per-

sonalized medicine.

This surprisingly optimistic view remembers the eu-

phoria that, ten years ago, accompanied the presentation

of the first draft of the human genome caused by the an-

ticipation that “Genetic prediction of individual risks of

disease and responsiveness to drugs will reach the med-

ical mainstream in the next decade or so. The develop-

ment of designer drugs, based on a genomic approach to

targeting molecular pathways that are disrupted in dis-

ease, will follow soon after” [6]. With hindsight, we

know that the progress in the last decade has not

reached the promises, not even nearly [1,7]. The hype in

the media is also in suspicious contrast to the recent at-

tempt of certain pharmaceutical companies to slash

down their own research force and to promote the idea

of open innovation, i.e., essentially unloading research

efforts, costs and research risks into the public sphere.

Whereas the general developmental trend appears cor-

rectly predicted, the devil is in the detail and the serious

disagreement is about timescales and in which areas/

applications the healthcare breakthroughs from genom-

ics and other technologies are more likely in the time

closer to us. Moving from the scientific laboratory to ac-

tual healthcare is also associated with a myriad of add-

itional issues besides the scientific task itself. Apparently

boring questions such as predictive power, robustness,

standardization, availability and reliability of the new

methods in conditions of routine application in regular

hospitals, clinics and in the out-patient context by pos-

sibly scientifically insufficiently trained personnel be-

come urgent. This includes the comparison of the new

methods with more traditional, tested approaches not

only from the viewpoint of medical science but also

cost-wise (in terms of money and working time for tests

and data analyses). Since considerable economic interest

is associated with the upcoming healthcare revolution

not only from IT equipment and healthcare solution

providers but also from charlatans who, for example, try

to sell life style advice derived from the customers’ own

genome sequence already today, it is important to get

the discussion away from the level of fairy tale and

hyped promises and to assess the current state of the art

realistically.

Besides the costs, the most important argument

against having genome sequencing and expression profil-

ing from every patient at present is the fact that the

overwhelming part of this data cannot be interpreted

into biologically and/or medically significant conclu-

sions. Today, ever faster sequencing leads foremost to

ever faster growing amounts of non-understood se-

quence data. To note, we need to know about the bio-

molecular mechanisms that translate the genome

sequence into phenotypes when we wish to interfere ra-

tionally at the molecular level. As elaborated elsewhere,

the biological functions of about every second human

gene are not well or even completely not known [1]. The

whole mystery of non-coding RNA function is hardly

scratched upon; yet, we know that many, also non-

protein-coding regions of the genome are actively

transcribed and this expression influences important

biological processes [8,9]. Maybe, it was one of the most

important insights from the whole human genome
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sequencing project that we can estimate now how much

human biology at the molecular level we do not know,

namely most likely (much) more than 50% [1]. To just

search for correlations between phenotypic, including

clinical conditions and genomic changes will appear in-

sufficient because of several reasons: 1) the path relating

genome features and phenotype is extremely complex in

many cases. 2) The statistical significance criteria will re-

quire impossibly large cohorts. 3) Rationally designed

therapy without mechanistic insight is problematic.

Given the pace of progress in the area of biomolecular

mechanism discovery during the last decade, it is

expected that it will take another century until we will

understand our own genome. Presumably, scientific,

technological and social factors will kick in that will ac-

celerate the advance [1]; yet, it is clear that this is not a

short term issue.

Most likely, biomedical applications that rely either on

the comparison of DNA or, generally, nucleic acid

sequences, without necessarily understanding their bio-

logical meaning or on the biomolecular mechanisms that

are already more or less known have the greatest likeli-

hood to achieve importance for healthcare, public health

and biotechnology. To the first class of applications be-

long methods for the identification of the human indivi-

dual’s origin and identity, be it in the forensic, genealogy

or legal context, but also the diagnostics of hereditary

diseases and the characterization of food items in terms

of quality and origin. With regard to the latter class of

applications, those diseases that require the investigation

of less complex gene networks and biomolecular

mechanisms will have better chances to benefit from se-

quencing, expression profiling and histopathological

imaging informatics than those with more complex

mechanisms. In this light, the perspectives of fighting

infections or cancer are more promising than, for ex-

ample, those of battling obesity since energy metabolism

appears to be one of the most complexly regulated sys-

tems in humans.

In this context, does the sequencing of patients’ DNA

in a large scale make sense? In several countries, for ex-

ample in Norway [10], programs are being implemented

that aim exactly at realizing this vision, the sequencing

of the patients’ genomes and of their cancers. It appears

to us that, at this stage, the move may be justified for

small, rich countries that have the necessary capacity to

finance an extensive follow-up fundamental research ef-

fort to study the newly collected data since, in many

cases, the clinical outcome for the specific patient might

be negligible at present. Thus, sequencing, expression

profiling, etc. make sense in a clinical setup where the

data can enter into a research environment for proper,

non-standard data analysis and where, beyond potential

benefit for the specific patient, these expensive laboratory

investigations can have serendipitous consequences for

the scientific knowledge gain that might benefit many

other future patients.

Management of innovation cycles of high-throughput

technologies and the role of bioinformatics in this

process

In addition to fundamental scientific problems with bio-

molecular mechanisms discovery, we need to emphasize

that high-throughput technologies such as nucleic acid

sequencing are far from mature. The renewal cycle

involves maximally a couple of years and it might be

already tomorrow that, due to some unexpected

innovation, the equipment purchased yesterday is hope-

lessly out of date even if the machines continue to look

shiny. Since the new generation of sequencing, expres-

sion profiling and other high-throughput technologies

tend to generate the biological data at much lower costs

and with higher accuracy than their predecessors, it does

not make sense to produce more data than can be prop-

erly analyzed within a reasonably short time frame; fu-

ture researcher will rather look at regenerated data

produced with newer technologies available then instead

of reviving old data files.

Even for dedicated research institutions with rich bud-

gets, it remains a financial problem to participate in

every step of technology development. It is not just the

purchase of new pieces of equipment, but also the estab-

lishment of subsequent data analysis pipelines, software

replacements and the training of the respective staff or

even the hiring of new types of professionals. The latter

issues might create more headache than the sequencer

purchase itself.

Many clinical labs attached to research and other top-

end hospitals around the world are thinking about how

to prepare for a swift increase in genomics and proteo-

mics analysis needs. Ever since their emergence in 2005,

next-generation sequencing (NGS) technologies have

proven revolutionary research tools in a variety of scien-

tific disciplines of the life sciences. NGS technologies are

now increasingly being applied in clinical environment,

which is partly due to the emergence of novel and effi-

cient sequencing protocols and partly to the appearance

of smaller, less expensive sequencing platforms. The pos-

sibilities of applying NGS in clinical research ranges

from full human genome profiling [11], microbiome pro-

filing [12] to biomarker discovery, stratification of

patients for clinical trials, prediction of drug response

and patient diagnosis. Such applications often involve

targeted re-sequencing of genes of clinical relevance

whereby not the entire genome is sequenced, only a few

dozen PCR-amplified regions or known disease-related

genes. These genes harbor diagnostic or causative muta-

tions of diseases including indels and single nucleotide
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polymorphisms. Individual genes have previously been

interrogated in clinical testing using traditional techni-

ques such as Sanger sequencing however NGS technolo-

gies have already begun to supplant the previous tools of

choice in these areas, offering increased speed and

throughput with reduced running costs.

Targeted re-sequencing in the clinical context presents

specific requirements and new challenges also for bio-

informatics which is aggravated by new computational

needs of fast changing sequencing platforms. Just to

mention one problem, that of multiplexing: simultan-

eous analyses of many patients for many diseases require

accurate and unequivocal identification of many persons

and many genes within an ensemble of many hundred

thousand reads. Molecular bar-coding makes this pos-

sible, but standard bioinformatics tools are not ready to

handle bar-coding information [13,14].

Clinical labs seek the advice of bioinformaticians

regarding what kind of software to use. The usual stand-

ard answer is to use the current best of genomics soft-

ware. Unfortunately, it is often found that these tools are

not even always capable of doing the clinical application

job, for example detecting specific mutation types. The

reason is simple: Genome aligners were designed to map

short reads to a whole genome, i.e., finding relatively

strong similarities in a background of weak or minimal

similarities. This scenario has called for specific speed-

up solutions and approximations, many of which may

not necessarily be true for amplicon sequencing proto-

cols. So, clinicians usually face two problems: i) Buy an

expensive hardware and non-transparent, and more

often than not, very computer time-consuming commer-

cial software from the platform vendor, or ii) seek advice

from trained bioinformaticians who may point them to

academic tools developed for genome analysis, but not

necessarily suitable for amplicon sequencing. The solu-

tion is not easy. Platform vendors cannot be blamed for

proposing a technically sound solution which, for the

moment, has no chances to follow the exponential

growth of clinical analysis needs. So, it is the task of fu-

ture bioinformatics projects to develop accurate and

flexible solutions for clinical applications.

Bioinformatics moving towards clinical oncology:
biomarkers for cancer classification, early
diagnostics, prognosis and personalized therapy
Losses of human lives and sufferings as a result of can-

cer remain one of the critical obstacles in prolonging ac-

tive human life span. Worldwide, cancers are responsible

for one in eight deaths [15]. In Singapore, cancers are

the major causes of mortality and accounts for about

28.5% of all deaths [16]. In our present understanding,

cancer is a disease involving genetic changes in certain

cell populations that lead to cellular reprogramming and

uncontrolled cell division; in turn, the formation of a

malignant mass can create a variety of clinical symp-

toms. The huge individual genome variation and diver-

sity of cellular phenotypes in cancers often complicates

clinical detection, classification, prognosis and treatment

of patients. In fact, histologically similar cancers do not

necessarily represent the same disease due to differences

in the biomolecular mechanisms leading finally to simi-

lar clinical outcomes. Consequently, among the list of 10

most important human diseases, the pharmacotherapy

efficacy of cancer is very low except for a few rare sub-

types [17]. The progress in the early diagnostics/detec-

tion and therapy of many cancers is very slow. For

instance, for the past 30 years, ovarian cancers (OC)

mortality rate has remained very high and unchanged,

despite considerable efforts directed toward this disease.

Current clinical oncology needs (i) improvement of

disease classification, (ii) increased specificity and sensi-

tivity of early detection instruments/molecular diagnos-

tics systems, (iii) improved disease risk profiling/

prediction, (iv) improvement of cancer therapeutic

methods including next generation drugs with higher

specificity and lowered toxicity (ideally, inhibitors of the

exact biomolecular mechanisms that drive individual

cancer growth) and generally more stratified or even

personalized therapies, (v) understanding of the anti-

cancer immune response, (vi) adequate monitoring and

rehabilitation during post-treatment recovery period and

(viii) patients’ social adaptation.

At present, there are two main lines of support for

clinical oncology from the side of computational biology

fuelled by data generated by genomics and proteomics

high-throughput technologies. On the one hand, genome

and RNA sequencing as well as expression profiling of

cancer biopsy samples opens the possibility to under-

stand the biomolecular mechanisms that are behind the

malignant transformation in the individual patient’s

tumor case. On the other hand, the status of biomarkers

can be measured and used to provide more accurate

diagnostics of a specific cancer type, prognosis and se-

lection of personalized therapy.

Hunting after cancer mutations in a clinical setup

The problems associated with large-scale sequencing

and expression profiling of cancers need to be seen from

two sides. Whereas the technical aspects of correct se-

quence and expression profile determination from gen-

erally miniscule biopsy amounts are considerable but

manageable (see a recent review of some of the IT and

bioinformatics aspects [18]), the evaluation of the data

in terms of clinically relevant conclusions for the specific

patient is presently impossible in most cases and the

clinically relevant effort is centered more around the

question whether the actual patient happens to carry a
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cancer that belongs to one of the better understood sub-

types. At the same time, sequencing and expression pro-

filing of carefully selected cohorts of cancer patients are

of immeasurable value for biomedical research aimed

studying yet unknown biomolecular mechanisms.

Technically, analyzing somatic mutations in complex

diseases such as cancer is particularly challenging since

the mutant alleles can be easily diluted below detection

thresholds due to the presence of wild type non-tumor

DNA and the inherent genetic heterogeneity of the

tumor itself. The problem is further aggravated by the

limited amount of DNA (1-100 ng) available from biop-

sies on the one hand, and the clinical sample prepar-

ation, on the other: For example, clinical samples

fixation in formalin randomly breaks DNA into 200-400

bp long fragments.

The current gold standard method tries to circumvent

these problems by applying targeted PCR amplification

to 100-200 bp long target sequences which is followed

by Sanger sequencing of the PCR amplicons. Next gen-

eration sequencing (NGS) platforms such as the 454

FLX Genome analyzer (Roche) or Ion Torrent Personal

Genome Machine (Life Technology), offer important

advantages due to their extremely high (1000-10000

fold) sequence coverage. Thus, sensitivity as compared

to Sanger sequencing is increased. This is very important

for detecting low frequency mutations, which makes

NGS an attractive option for diagnostic sequencing.

For clinical analysis of the transcriptome, deep se-

quencing technologies (e.g. RNA-seq, etc.) allow detect-

ing low abundant RNA transcripts. Many classes of

these transcripts (e.g., long non-coding RNAs) play es-

sential regulatory roles in cancer development and can

potentially be used for clinical sub-typing, detection,

prognosis and therapy design of cancers. Detection of

the rare genome aberrations and low-abundant tran-

scripts in cancers and in human body fluids might be

important. However, clinical studies of such data re-

quire development of appropriated biomedical research

infrastructure, collection of large patients’ cohorts, man-

agement of well-coordinated interdisciplinary research

projects, dynamical and integrative databases, novel IT

solutions and massive data analyses within a computa-

tional biology research effort.

Another advantage of NGS technology is its ability to

deal with parallel sequencing of multiple genes. The

widely respected white paper of the American Society of

Clinical Oncology [19] suggested that all targeted drugs

should be registered based on the molecular profile in-

dependently from the tumor type. Recently, researchers

of the Massachusetts General Hospital argued that sim-

ultaneous analysis of 12 genes is useful for the diagnosis

of lung cancer [20]. Therefore, there is a clinical need

for targeted re-sequencing of dozens of genes in each

cancer patient. There are several, commercially available

multiplex re-sequencing assays in clinical use today. A

typical analysis for cancer targets may require PCR-

based re-sequencing of 10 to 1500, mainly exon-derived

amplicons selected from 10 to 400 genes, and a mini-

mum amount of 10 ng DNA [21].

Biomarkers for cancer classification: mutations in

signaling proteins

A biomarker is a traceable biochemical substance that is

informative about the status of a disease or medical con-

dition. For practical purposes, it is sufficient to show a

close correlation between the occurrence of the bio-

marker and the cancer type and development in model

systems and in clinical trials. Yet, the likelihood of the

biomarker actually being associated with the cancer sub-

type considered is dramatically increased if the bio-

marker plays a role in the biomolecular mechanisms

driving the cancer and not just in some secondary or

tertiary effects of cancer growth. However, discovery of

reliable diagnostic, prognostic and drug response cancer

biomarkers faces big challenges due to patient hetero-

geneity, small sample sizes, and high data noises.

A couple of cancer subtypes well-characterized mech-

anistically have recently seen spectacularly successful

treatment. Mutations in signaling proteins have been

found to drive cells into the cancer state and the design

of drugs that specifically bind to these mutated forms

have been shown to suppress cancer development. For

the drugs to be applied, a companion diagnostic test is

necessary to verify whether the potential patient has in-

deed a cancer driven by the target supposed. As a rule,

this will dramatically shrink the number of patients but

the selected ones have a high chance to receive benefits

from the treatment. Three cases illuminating the trend

towards mutation-specific targeting drugs are reviewed

in some detail below.

Several forms of chronic myelogenous leukemia

(CML) and gastrointestinal stromal tumors (GISTs) are

characterized by the Philadelphia chromosome, a chromo-

somal translocation, and the subsequent fusion of genes

bcr and abl. As a result, the tyrosine kinase abl is locked

in its active signaling state and affecting the down-

stream pathways Ras/MapK (increased proliferation due

to increased growth factor-independent cell growth),

Src/Pax/Fak/Rac (increased cell motility and decreased

adhesion), PI/PI3K/AKT/BCL-2 (suppression of apop-

tosis) and JAK/STAT (driving proliferation). The inhibi-

tor Imatinib (STI571, Gleevec) inhibits bcr-abl and, as a

result, an originally fatal disease is transformed into a

chronically manageable one [22]. The same inhibitor is

also active for some sequence variants of c-kit and

PDGF-R (platelet-derived growth factor receptor) and,

thus, can be applied in a handful of other cancers. Since
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application of the drug is essentially selectively killing

sensitive cells, strains with resistant mutations survive

and it might require the application of other batteries of

drugs to bring these strains down, too [23].

Another case with some success are melanoma sub-

types with the B-RAF mutation V600E that can be trea-

ted with vemurafenib (PLX4032, RG7204) [24,25]. In

melanomas with mutant B-RAF (V600E), the drug inhi-

bits specifically B-RAF (V600E) monomers. Since the

ERK signaling inhibition is tumor-specific, these RAF

inhibitors have a broad therapeutic index and a remarkable

clinical activity in patients with melanomas that harbor

the respective B-RAF mutant (V600E). However, resist-

ance invariably emerges, for example via alternative spli-

cing. The version p61 B-RAF (V600E) shortened by exons

4-8 shows enhanced dimerization in cells with low levels

of RAS activation and ERK signalling is resistant to the

RAF inhibitor [25].

Certain EGFR (epidermal growth factor receptor, an-

other tyrosine kinase) driven cancers of breast, lung,

pancreas, etc. are sensitive to gefitinib (Iressa) or erloti-

nib (Tarceva). The EGFR class includes Her1 (erb-B1),

Her2 (erb-B2), and Her 3 (erb-B3). The EGFRs are

hyper-activated due to a mutation in the tyrosine kinase

domain and this leads to inappropriate activation of the

anti-apoptotic Ras signalling cascade, eventually result-

ing in uncontrolled cell proliferation [26].

Biomarkers for cancer classification: up-regulated genes

The literature on cancer biomarkers is enormous and it

is beyond this review to be comprehensive. Here, we

focus on developments with our authors’ involvement.

Lung adenocarcinoma (AC) is the most common type

of lung cancer which is the leading cause of cancer

deaths in the world. The genetic mechanisms of the

early stages and lung AC progression steps are poorly

understood. Currently, there are no clinically applicable

gene tests for early diagnosis and lung AC aggressiveness

assessment. Recently, authors of this review (VK et al.)

suggested a method for gene expression profiling of pri-

mary tumours and adjacent tissues (PT-AT) based on a

new rational statistical and bioinformatics strategy of

biomarker prediction and validation, which could pro-

vide significant progress in the identification of clinical

biomarkers of lung AC. This approach is based on the

extreme class discrimination (ECD) feature selection

method that identifies a combination/subset of the most

discriminative variables (e.g. expressed genes) [27]. This

method includes a paired cross-normalization (CN) step

followed by a modified sign Wilcoxon test with multi-

variate adjustment carried out for each variable. Analysis

of paired Affymetrix U133A microarray data from 27

AC patients revealed that 2,300 genes can discriminate

AC from normal lung tissue with 100% accuracy. Our

finding reveals a global reprogramming of the transcrip-

tome in human lung AC tissue versus normal lung tissue

and for the first time estimates a dimensionality of space

of potential lung AC biomarkers. Cluster analysis applied

to these genes identified four distinct gene groups. The

genes related to mutagenesis, specific lung cancers, early

stage of AC development, tumour aggressiveness and

metabolic pathway alterations and adaptations of cancer

cells are strongly enriched in the discriminative gene set.

26 predicted AC diagnostic biomarkers (including SPP1

and CENPA genes) were successfully validated on qRT-

PCR tissue array. The ECD method was systematically

compared to several alternative methods and proved to

be of better performance [27]. Our findings demonstrate

that the space of potential clinical biomarker of lung

cancers is large; many dozens of combined biomarkers/

molecular signatures are possible. This finding suggests

that further improvement of computational prediction

and feature selection methods is necessary in conjunc-

tion with systematic integration of massive and complex

data analysis.

Similar computational approaches applied on breast

cancer patients’ expression data allowed important new

insights into molecular and clinical classification, tumor

aggressiveness grading and identification of novel tumor

sub-types. Current statistical approaches for biomarker

selection and signature extraction were extended by

developing a hybrid univariate/multivariate approach,

combining rigorous statistical modeling and network

analysis [28]. In this approach, single survival-significant

genes can be identified and used to generate important

cancer related gene networks. The method also allows

estimating the synergistic effect of two or several genes

belonging to the same or different networks on the

patients’ survival. With this analysis, we generated and

evaluated several related signature sets which are super-

ior to traditional clinical prognostic markers and existing

breast cancer classifications [28-30]. The final groupings

have significantly different p53 mutation status, tumor

aggressiveness grading and metastasis events. Most im-

portantly, it could be shown that the intermediate class

of G2 breast cancers does not have a justification at the

level of gene expression. The G2 cases are shown to be

either G1-like or G3-like. This implies that G2 patients

with a G3-like expression profile are recommended to

receive the more aggressive treatment reserved for G3

patients.

Currently, using clinical and molecular markers does

not provide specific and reliable ovarian cancer (OC)

patients’ stratification, prognosis and treatment response

prediction. High-grade epithelial ovarian serous carcin-

oma (HG-EOC), a major type of OC, is poorly detected.

At the molecular level, the tumors frequently exhibit

altered expressions of many hundreds and thousands
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features at genome, transcriptome and proteome levels.

The specific and reliable biomarkers of this complex

disease and appropriate therapeutic targets have not

been defined yet. Similar computational approaches as

described above in the cases of lung and breast cancers

have been used to derive expression signatures for OC

and they were found to include the EVI1 gene [31].

It is also notable that non-coding RNAs can also be

used as biomarkers [32]. To conclude, the identification

of reliable diagnostic, prognostic and drug response-

related biomarkers for cancer requires integrative data

analysis and understanding of the molecular and cellular

basis of genome loci and gene expression and pathways.

Sequence-structure-function relationships for
pathogenic viruses and bacteria and their role in
combating infections
Whereas the discussion above has highlighted that

sequence-function relationships are not well understood

and this status will continue for a while, the situation for

the small genomes of pathogenic viruses and bacteria is

considerably more promising. Their genome size is

much smaller (from a handful of genes in the case of

viruses to maximum a few thousand genes for bacteria)

and their physiology is much more completely under-

stood at the level of biomolecular mechanisms. For ex-

ample, there is no gene in the influenza virus where at

least some mechanistic aspect of its molecular and cellu-

lar function is known; a stark contrast to the situation

for the human genome where about half of the genes

still await their at least initial characterization [1] and

even the compilation of the complete proteome is not in

sight [33].

With sequencing getting increasingly cheaper and effi-

cient, it became possible to explore the full genome of

the set of strains that is actually invading the patient’s

body. This is important since, to evade the patient’s im-

mune system, the pathogen mutates and one or several

of the mutants might find the weak spots of the patient

and propagate. This allows not only designing efficient

patient-specific treatment strategies, for example by de-

ducing certain drug resistances theoretically from the

pathogen’s genomic sequence before even trying actually

the respective drug in the treatment. It provides also

much better options for epidemiology and public health

since each strain can be individually determined and,

thus, the actual spread of the pathogen can be traced

geographically and in real time. Measures for preventing

and combating epidemics can be designed more ration-

ally and with lower costs for social and economic life.

Most attention with regard to rationally designed strat-

egies for fighting infection so far has been directed to-

wards the acquired immunodeficiency syndrome (AIDS)

caused by the human immunodeficiency virus (HIV) and

this can rightly be considered a success story for compu-

tational biology. A previously absolutely fatal disease has

been transformed into a chronic illness with high quality

of life and, for many patients, with apparently zero viral

blood counts. Not only have all the drugs against AIDS

used in the multi-drug cocktail for high active antiretro-

viral therapy (HAART) been rationally designed against

structures of HIV proteins to interfere into the well-

studied life cycle of the virus [34]. New drugs appear all

the time and provide new treatment opportunities for

patients harboring strains resistant against the standard

cocktails [35]. Sophisticated knowledge-based thera-

peutic algorithms [36] are available to treat AIDS

patients optimally depending on the mutation spectrum

within the patient’s viral load [37,38].

Similar strategies are useful for other pathogens that

try to evolve away from the attack of antibiotics/antiviral

therapy or the immune system’s efforts. Staphylococcus

aureus causing a wide range of infection from skin to

post-operative wound infections has great adaptive

potential and can generate forms (best known as

methicillin-resistant Staphylococcus aureus - MRSA)

widely resistant against many available antibiotics. Exact

determination of the molecular epidemiology with

multi-locus sequence typing and other methods can be

the basis for an optimized antibiotics selection for more

efficient therapy [39].

In the following, we explore how classical bioinformatics

aimed at studying biomolecular sequences and structures

can impact infection medicine in context with the influ-

enza virus and the enterohemorrhagic E. coli pathogens.

Genome sequence studies of the influenza virus and

public health

Besides the occasional pandemics, recurrent seasonal in-

fluenza and its ongoing evolution has always been an

important topic concerning public health. Whenever a

new flu strain emerges and threatens to circle the globe,

health authorities and clinicians need to know the char-

acteristics of the new virus including virulence, drug

susceptibility and vaccine efficacy. The recent swine flu

pandemic from 2009 is an excellent example how com-

putational methods can provide crucial support not only

in the early molecular characterization [40-42] but also

to follow the still ongoing evolution of the virus. Modern

sequencing technology and increased preparedness

resulted in a significant worldwide increase of institu-

tions and hospitals that can generate molecular sequence

data from patient samples. But when the patient-specific

strain sequences are available after sequencing ordered

by hospitals or ministries, it appears that the institution

cannot properly handle them. The expertise for the subse-

quent steps of computational analysis to connect the geno-

type to possible phenotypes is often sparse. Bioinformatics
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can be used to rapidly screen influenza sequences for po-

tentially interesting mutations, for example, through com-

parative genomics, 3D structural modeling, literature text

mining and plotting geo-temporal occurrence patterns for

epidemiological significance.

While this sounds exciting, are we really in a state that

we can reliably predict relevant phenotypic changes from

sequence mutations? First, the influenza genome is small

and codes for only 10-13 proteins all of which are well

characterized in their functions and there exists a mechan-

istic understanding how they work together as well as how

they interact with the infected host. Second, there is wide

interest in influenza research and the amount of available

sequences, crystal structures, experimental data and asso-

ciated literature is enormous which allows transferring in-

formation and annotations if very closely related strains are

compared. For example, the typical Tamiflu resistance mu-

tation H274Y in the neuraminidase protein has the same

effect on equivalent positions in seasonal H3N2, old sea-

sonal H1N1, pandemic H1N1, avian H5N1, etc.

But what can be said about “new” mutations? In the

second wave of the 2009 H1N1 pandemic, a Norwegian

team reported a high frequency of a new hemagglutinin

mutation D222G in severe cases [43]. The power of bio-

informatics for linking genotype to phenotype for influ-

enza mutations can be shown for this example, as within

a few hours from first reports of the mutation one could

find a possible mechanistic explanation on how this mu-

tation could possibly exert its severity using computa-

tional tools and databases alone. The first obstacle is the

numbering, different groups prefer to use old seasonal

H3N2 based numberings also for H1N1 pandemic strains

but it is important to know that D222G is actually corre-

sponding to the mutation D239G in the literal sequence

numbering of circulating pandemic strains which is neces-

sary to find and count appearances of this mutation in

available influenza surveillance sequences. This can easily

be resolved computationally by aligning with respective

reference strains with defined numbering. Sequence

alignments to strains with known structure can also be

used to build homology models and find the corresponding

position of the mutation in the 3D structure. It turns out

that D222/239G was located within the receptor binding

pocket which determines the type of sugar-linked sialic

acids recognized on human host cells but the precise

effects on substrate specificity is still challenging to predict

in detail by docking and modeling alone. Being able to

switch between numbering schemes is also important to

find prior work on related mutations in the literature. In-

deed, a corresponding position in avian H1N1 has previ-

ously been investigated [44] as mutation G225D which is

exactly equivalent to the new D222/225/239G but with

inverted direction. The paper had found that G at this pos-

ition is associated with preference for α2-3 avian-like re-

ceptor specificity while D would bind better to α2-6

human-like receptors. By analogy, it was possible to deduce

that the new D222/225/239G mutation in the pandemic

H1N1 could possibly shift the receptor preference to

avian-like α2-3 receptors. The next important additional

hint from the literature was that also humans have some

α2-3 receptors but they are found deeper in the lungs, not-

ably in the bronchiolae [45]. Finally, everything comes to-

gether and a hypothetical mechanism on how the new

mutation could be related to severity is apparent where the

D239G would change the receptor specificity to allow

infections deeper in the lungs (Figure 1). More than a year

later, this exact mechanism of the D222/225/239G muta-

tion was studied in detail [46] and the experiments verified

what could be suggested already much earlier by computa-

tional and literature analysis by a bioinformatics expert

within a few hours. Many of the functions described here,

have now been implemented in the WWW-based FluSur-

ver that can accept patient-specific virus genome informa-

tion and generate a clinical relevance report automatically

(SMS et al., to be published).

There are many more examples where Bioinformatics

analysis helped to elucidate phenotypic roles of new influ-

enza mutations such as marker mutations of new variants

Figure 1 The link between an influenza virus mutation and the altered course of infection. Schematic representation showing how a
single viral amino acid mutation (right, red balls) can affect host cell receptor (blue balls) interaction, which can alter viral localization and where
the infection takes place, which in turn can affect severity and symptoms for the patient (left). A thorough understanding of the effects of
mutations on biological mechanisms is also important for other human diseases such as cancer as well as patient-specific response to different
treatments. Attribution of images: The 3 left-most images of the composed figure are public domain or under free-to-use licenses at Wikimedia
commons from the following sources: patient body and organ [118] and infected cell [119].
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rising in occurrence [47], changes in hemagglutinin surface

epitopes [48] and glycosylation sites as well as detect

known [49] and novel [50-52] mutations in the neuramin-

idase drug binding pocket that alter antiviral drug efficacy.

While the wealth of prior work on influenza is crucial for

the ability to make relevant computational predictions, it

shows that, with a concerted effort, similar successes may

be achieved in other areas of high interest.

Conclusions from the sequence of the enterohemorrhagic

O104:H4 E. coli strain

Next generation sequencing has dramatically brought

down the cost of genome sequencing but the current

reality is that there usually is a long way from the initial

genomic data to information relevant for clinicians.

However, there are exceptions. When an enterohemor-

rhagic O104:H4 E. coli strain caused a major outbreak in

Germany [53] in 2011, the genome sequence was rapidly

available through next generation sequencing [54]. At

the same time, the Robert Koch Institute provided the

microbial characterization including the clinically im-

portant antibiotic susceptibility profile [55]. In principle,

the information if a specific antibiotic drug is effective

against an organism should be encoded in its genome by

the presence of the known target gene of the respective

drug as well as the absence of associated drug resistance

factors. Clearly, the prerequisite for computationally de-

riving an antibiotic susceptibility profile depends not

only on the availability of the whole genome but also

sufficiently complete annotation data for drug targets

and resistance mechanisms of closely related strains or

organisms. Since E. coli and related bacteria have been

widely studied before in this regard, we show here that

one can computationally identify antibiotic drugs that,

potentially, can effectively target a new pathogen with

available genome, such as the enterohemorrhagic O104:

H4 E. coli strain. The steps to achieve this are essentially

routine bioinformatics work but typically not easily ac-

cessible to clinicians.

First, the available genome sequences (http://www.ncbi.

nlm.nih.gov/Traces/wgs/?val=AFOB01) were searched with

BLASTX [56] for close to identical sequence matches

against a database of known drug targets from DrugBank

[57]. Requiring at least 97% sequence identity of the E. coli

sequences to the proteins known to be drug targets ensures

that also their structure will be highly similar and hence

should represent the same drug binding properties. Sec-

ond, we repeat the sequence search but this time against a

database of known drug resistance factors from ARDB [58]

requiring a lower threshold of at least 60% identity to con-

servatively pick up also more remote similarities to possible

resistance factors. Third, we use a Perl script to parse the

hits from the BLAST outputs as well as the drug target

and resistance annotation data from the two databases and

finally identify the list of drugs for which a known target

gene was found in the genome but no respective associated

resistance factor.

In order to validate the results, we compared our com-

putational antibiotic susceptibility profile with the ex-

perimental results. To our positive surprise, 15 out of 25

experimentally tested antibiotics were also covered by

the existing databases and could, hence, be assessed

through our computational workflow. The identity

thresholds for the two sequence searches described

above have been selected to produce the best possible

match with the experimental data. Table 1 shows that

the in silico approach correctly assigns resistance or sen-

sitivity for 13 of the 15 antibiotics. In detail, the new

bacterial strain was correctly predicted to be sensitive to

7 antibiotics and resistant to 6 drugs from the list. The

only two cases of a mismatch from the prediction with

the clinical experimental result are interesting and dis-

cussed below.

The first case is the combination drug Piperacillin/

Tazobactam which we flag as sensitive but the Robert

Koch Institute as resistant. Sequence searches identified

a TEM-1 metallo beta-lactamase in O104:H4 E. coli

which causes resistance to penicillins (including Pipera-

cillin) by degrading them but we also find that there

exists a specific inhibitor against TEM-1 metallo beta-

lactamases, Tazobactam, which is given in combination

with Piperacillin to inhibit the beta-lactamase and,

Table 1 Predicted potentially effective drugs against

enterohemorrhagic E. coli

Antibiotic Exp. Comp.

Piperacillin/Tazobactam R* S

Cefoxitin R R

Ceftazidim R R

Cefpodoxim R R

Imipenem S S

Meropenem S S

Amikacin S S

Gentamicin S S

Kanamycin S S

Tobramycin S S

Streptomycin R R

Tetracyclin R R

Nitrofurantoin S S

Trimethoprim/Sulfamethoxazol R R

Fosfomycin S R

Experimentally measured (Exp.) versus computationally predicted (Comp.)

antibiotics susceptibility profile. R . . . resistant; S. . . sensitive; * . . . defined as

resistant (AES VITEK). Prediction and experimentally determined results

coincide except for two cases (Piperacillin/Tazobactam and Fosfomycin) which

are discussed in the text in detail.
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therefore, increase efficacy of penicillins to which this

strain should otherwise be resistant. In theory, this

means that the computational prediction that Piperacil-

lin/Tazobactam is effective should be correct. However,

it turns out that, in clinical practice, this drug is recom-

mended to be avoided due to possible inoculum effects.

Hence, the resistant flag from the clinical judgement

according to the used VITEK AES experimental classifi-

cation system.

The second case is Fosfomycin, to which the new

strain was experimentally found to be sensitive while the

computational approach assumed resistance due to the

identification of a multidrugefflux pump protein anno-

tated to also export Fosfomycin. This means that either

the annotation is inaccurate or it would be interesting to

further look into the detail of the few sequence differ-

ences between the new and the previously known trans-

porter (99% identity) to find determinants of activity and

substrate specificity which could be considered in a fu-

ture more comprehensive approach.

Overall, this crude workflow utilizing available data-

bases shows that a computational antibiotics susceptibil-

ity profile can be derived with some accuracy by

combining next generation genome sequencing with fur-

ther computational analysis, but it definitely still needs a

critical experienced doctor who further scrutinizes and

selects the most suitable treatment according to the cir-

cumstances of the infected patient as well as includes

any new clinical findings on drug responses of the re-

spective strain.

Bacterial communication and cooperation in health and

disease

The analysis of human microbiomes and small bacterial

communities causing multi-bacterial diseases are among

the most challenging and intriguing tasks of medical

genome research today [59-61] also including the field

of plant diseases [62]. The discovery of chemical com-

munication among bacteria in the 1990s has fundamen-

tally changed the traditional view that pictures bacteria

as single-celled organisms living in isolation [63-66]. In

the last fifteen years, it has become increasingly evident

that bacteria have the potential to establish highly com-

plex communities. Many microbes live in large, multi-

species communities in which the participants jointly

exploit the resources. Multispecies microbial consortia

constitute a major form of life that is found in environ-

ments ranging from high-altitude mountains (more than

8 km above sea level) to more than 10 km below the sur-

face of the oceans, and have always been among the

most important members and maintainers of the planet's

ecosystem. The medical importance of this phenomenon

is sweeping. Opportunistic pathogenes, such as Pseudo-

nomas and Burkholderia species abound in hospital

environments, ready to attack patients weakened by dis-

ease or injury. For instance, Pseudomonas aeruginosa

usually does not harm a healthy human organism, but

can be lethal in the lung of cystic fibrosis (CF) patients,

or in burn wounds [67].

Many prokaryotes possess inter-cellular signaling sys-

tems which allow species to colonise new habitats, to in-

vade hosts and to spread over surfaces [63-66]. A typical

example is quorum sensing (QS) which enables bacteria

to switch from low activity to high activity regimes using

signaling molecules as well as “public goods” (e.g. surfac-

tants, enzymes, siderophores) that facilitate movement,

nutrient uptake amongst other things [65,66]. We share

the widespread opinion that the “change of bacterial life-

style” is crucial for colonizing habitats and infecting sus-

ceptible hosts – unfortunately the signalling systems that

orchestrate the underlying communication and collabor-

ation mechanisms are not accurately annotated in bacter-

ial genomes. Therefore, a systematic characterization of

QS systems in Gram negative bacteria was carried out

[68,69] and a modelling effort to map out the theoretic-

ally possible consequences of communication and collab-

oration in bacterial populations was initiated [70-72].

Virulence and adaptability of many Gram-negative bac-

terial species are associated with an N-acylhomoserine

lactone (AHL) gene regulation mechanism called

quorum sensing (QS). The arrangement of quorum sens-

ing genes is variable throughout bacterial genomes, al-

though there are unifying themes that are common

among the various topological arrangements. A bioinfor-

matics survey of 1403 complete bacterial genomes

revealed characteristic gene topologies in 152 genomes

that could be classified into 16 topological groups

[68,69]. A concise notation for the patterns was devel-

oped and it was shown that the sequences of LuxR regu-

lators and LuxI autoinducer synthase proteins cluster

according to the topological patterns.

The macroscopic behavior of bacterial communities is

notoriously difficult to study, colony patterns, invasion/

colonization events depend on a multitude of parameters

many of which cannot be reproduced in lab cultures.

Therefore, computational modeling, and particularly the

use of simplified minimal models is a very important tool

for studying the behavior of populations in rational

terms. Agent-based models of communicating and col-

laborating bacteria have developed [70]. The bacterial

cells are represented by agents randomly moving on a

plain (such as an agar surface), while consuming nutri-

ents, secreting signal molecules and “public goods”.

Nutrients, signals and public goods are diffusing on the

surface, and their local concentration exceeds a thresh-

old, the metabolism and movement of bacterial agent

switches to a more intensive state. In this model signals

are the means of communications, and public goods are

Kuznetsov et al. Health Information Science and Systems 2012, 1:2 Page 11 of 18

http://www.hissjournal.com/content/1/1/2



the means of cooperation as can be observed in QS bac-

teria. Even though highly simplified, the model reflects

the crucial behavior patterns of communicating/cooper-

ating bacteria in an open, nutrient/limited environment.

Namely, 1) isolated bacteria cannot survive; only bacteria

reaching a critical population size (“quorum”) have a

chance for survival. 2) Bacteria self-organize into com-

pact communities or “active zones” in which signals and

public goods are present in sufficient amounts [70]. 3) Col-

laborating communities can collapse if non-cooperating

mutants are present [71,72].

Modeling the mutants of QS mechanisms is highly

relevant for disease prevention. There is a very vivid

interest from the pharmaceutical and pesticide indus-

tries, analysts agree that interventions targeting quorum

sensing are among the major trends of the future. Since

many bacteria use quorum sensing for infection, it is

plausible to think about jamming strategies. According

to one such scenario, one can saturate the surface of a

plant with a signal molecule that will call bacteria to at-

tack. If a lonely pathogen lands on the surface, it will im-

mediately start to attack, but at the wrong time and

place. Since it is alone, it will perish. Or, we can put a

gene into the plant that produces an enzyme capable of

destroying the signal molecule of the pathogenic bac-

teria, so that those will never wage an attack. But both

strategies can strike back since they can also destroy the

signaling of the beneficial bacteria that are essential to

the host. According to a third scenario one may pre-

vent the growth of an infecting pathogen by a greedy

but antibiotic sensitive mutant of the same species,

and then we eliminate the mutant by an antibiotic that

specifically acts on that mutant. This is very appealing,

but what do we do if the mutant created to heal gets

some harmful genes or looses its antibiotic susceptabil-

ity? Many similar questions can be studied using com-

putational models [73].

Impact of bioimage informatics on healthcare
Most likely, the penetration of automated evaluation

tools for the analysis of clinically relevant histological

images in diagnostic contexts is one of the areas that will

experience great changes in the near future. The process

of biomedical imaging involves little or no discomfort to

the patients, while providing an effective tool for diagno-

sis. However, successful usage of images requires a high

level of human intelligence, making automated image

analysis by machines a challenging task. Currently, the

gold standard for diagnosis through imaging is by experi-

enced clinicians, typically radiologists or pathologists. It

takes many years to train proficient clinicians to analyze

images manually and, despite that, this gold standard is

not perfect and suffers from subjective variations be-

tween different clinicians.

Advances in image processing, pattern recognition and

computer vision in the past decades have boosted the

possibilities for the application of computing technology.

Currently, the focus is on computer aided diagnosis ra-

ther than to achieve a fully automated approach. Soft-

ware that can support decision making and reduce the

workload of clinicians, especially in routine operations, is

extremely useful and valuable. Besides the direct deriv-

ation of clinically relevant conclusions from the images,

such systems call also for the integration with databases

of medical ontologies, the patients’ medical records, etc.

Computational image analysis methods can be broadly

categorized into those used for assessment, diagnosis

and surgery. This section attempts to cover several ex-

emplary areas of imaging and image analysis in health-

care. Because of the large extent of research work

ongoing in academic bioimage informatics and medical

image analysis and the growing engagement of the in-

dustry, this section cannot be comprehensive but rather

we seek to cover a broad spectrum.

Digital pathology

Advances in computer vision and microscopy instru-

mentation have made digital pathology an important

emerging field. The objective is to aid the pathologist in

the analysis of high resolution cellular images obtained

through biopsy. For example, highlighting regions of

interest or reducing diagnostic variation can generate a

big impact. Histological images from various organs

such as prostate [74], breast [75] and liver have been the

object of algorithm development.

Here, we shall focus our discussion on prostate digital

pathology. Prostate cancer has a high prevalence rate

worldwide. For example, it is the most common non-

cutaneous male cancer in the United States [76] and it is

the 3rd most common male cancer in Singapore [16].

The American Cancer Society report in 2009 estimates

192,280 new prostate cancer cases with 27,360 prostate

cancer specific death [76]. The severity of prostate can-

cer diagnostics is compounded by disagreements be-

tween individual pathologists with regard to grading

using the Gleason classification [77]. This agreement be-

tween different pathologist can be as low as 70% [78]

and up to 29% of Gleason gradings were different be-

tween pre- and post-operative prostate cancer specimen

[79]. Hence, having objective computer algorithms to aid

in prostate pathology assessment is essential to improve

diagnosis.

Most computational methods are developed to analyze

microscopy images on the standard hematoxylin/eosin

stain. The goals are gland segmentation since the archi-

tecture of glands is critical for Gleason grading and the

identification and segmentation of nuclei since this is

useful for detecting nuclei signatures specific to
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cancerous cells. Common computer vision techniques

used are level sets [80], fractal analysis [81] and machine

learning [80,82-86]. These techniques are used to seg-

ment glands [80,85] and nuclei [82,84] or to identify

regions of malignancy directly [83].

Computer vision in dermatology

Assessment of skin condition and health is both import-

ant for clinical medicine as well as for the cosmetics in-

dustry. At present, assessment of the skin typically

involves a trained dermatologist who will examine fea-

tures such as textures and landmarks. While training of

dermatologists takes many years, the subsequent diagno-

sis suffers from subjective interpretation differing among

dermatologists. Hence, a more objective approach is in

demand.

Considerable effort is ongoing to analyze skin surfaces

through the use of objective computational methods.

Protocols to ensure objective and consistent imaging of

human skin (for example, in a well-controlled lighting

environment) are vital for reliable diagnosis by computer

algorithms [87-89]. Image acquisition is followed by the

application of task-dependent image processing and

computer vision methods. Liu et al. [90] use texture

analysis to create an objective way of evaluating the ef-

fectiveness of treatment. A neural network framework

has been developed to analyze the human skin condi-

tions such as color, roughness, glossiness or tension

[91,92]. Skin images have also been studied with data

mining methods [88,93] and via modeling/reconstruct-

ing the skin surface [89,94].

Computer vision in eye diseases

Imaging methods for eye diseases are unique among bioi-

maging techniques because images of the eyes are easily

accessible using conventional light cameras. There is no

need for expensive and sophisticated machines such as a

computer tomograph or magnet resonance imager. A

common imaging modality is the optical coherence tom-

ography; other imaging methods such as fundus photog-

raphy, ultrasound and infra-red imaging are also used.

Although image analysis has been used in the assessment

of many eye diseases, we will focus our discussion on

glaucoma and dry eye disease in this paper.

Angle closure glaucoma

According to a world health organization report [95],

glaucoma is a major global cause of blindness (approxi-

mately 5.2 million cases and about 15% of all cases of

blindness). The impact of glaucoma on public health will

increase with an aging population. However, the lack of

a comprehensive measure of glaucoma compounded

with its ability to cause sudden blindness makes it hard

for treatment planning. Surprisingly, about 50-90% of

potential patients in the world are unaware that they

have glaucoma [96,97].

Glaucoma is classified into angle closure and open

angle glaucoma according to the drainage angle, the

angle between the cornea and iris. Primary angle closure

glaucoma is the major form of glaucoma in Asia, in par-

ticular, among the Chinese population. It was suggested

that angle closure glaucoma causes more blindness than

open angle glaucoma in relative terms [98].

A common way for assessment of angle closure glau-

coma is through gonioscopy in which the doctor uses an

optical instrument to look at the anterior chamber to de-

cide if the drainage angle is open or close. Ultrasound

[99] and optical coherence tomography (OCT) [100]

images are also used for assessment. Computer vision

techniques are used for analyzing eye images derived

from the different modalities. As it takes much effort to

master the technique of gonioscopy, Cheng et al. [101]

developed a computational technique for RetCam

images. A machine-learning based method aids glaucoma

diagnosis by analyzing the cup-to-disc ratio measured

on fundus images [102]. OCT images provide high

resolution and a 3D view of the anterior chamber.

Image analysis software has been developed to make

precise measurements of important geometric informa-

tion such as anterior chamber area, anterior chamber

width, iris thickness, etc. on OCT images [103]. These

data can then be correlated to generate new clinical

knowledge [104,105].

Image analysis in assessing the dry eye condition

The disease of dry eye has no clear definition; generally,

it is a condition in which there is an unstable tear film

during the open eye state. The dry eye condition has a

prevalence rate of 10-20% in Sweden, Japan, Australia

and several other countries. The most common treat-

ment of dry eye is application of eye drops [106].

One cause of dry eye disease is meibomian gland dys-

function. The meibomian glad is located at the inside of

the tarsel plate that supplies meibum, an oily substance,

which forms a protective layer to the tear film. Dysfunc-

tion of meibomian glands causes lack of meibum and,

often, resulted in degeneration of meibomian glands.

The morphology of meibomian glands can be imaged

using an infra-red camera mounted on a conventional

slit lamp camera [106]. This imaging technology has

enabled the application of advanced computer vision

techniques for better diagnosis and patient management.

Images from healthy meibomian glands shows a strip

like pattern in gland morphology; with the strips being

relatively straight, parallel and equally spaced. Images of

highly degenerated glands show no strip like patterns at

all, but only small isolated regions of remnant glands.
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Morphology for early stage disease shows twisting, non-

parallel and unequally spaced strip like patterns [106].

While the process of imaging is simple and relatively

cheap, the analysis of the morphology of meibomian

glands and other clinical examinations that eventually

lead to diagnosis and treatment require trained ophthal-

mologists with experience in handling dry eye patients.

Unfortunately, there is no clear objective criteria for

grading meibomian glands morphology degeneration, al-

though some schemes have been suggested [106]. Inter-

individual variation will also cause problems. Hence,

large population screens on meibomian glands morph-

ology does not directly lead to overall increase in better

management of the disease.

An effective way to circumvent the problem of cost

and inter-individual variation is to develop advanced

computer vision techniques to process and grade images

of meibomian glands. A team from Singapore has devel-

oped an image analysis software that can enhance infra-

red images of meibomian glands, segment the strip-like

patterns and extract important features for classifying

the images [107].

Image analysis for assisted surgery

Pre-planning is an important component to the success

of surgery, so that surgical operations can be performed

systematically, completely and swiftly. Usually, planning

involves studies of 3D images of the part of the patient’s

body where the operation will be performed. Image

assisted surgery is available or being developed for al-

most all parts of the human body, for example for brain,

liver, heart, gastrointestinal tract and for hand recon-

struction surgery. The digital 3D image is enhanced by

advanced computer graphics, visualization and various

forms of accurate geometrical measurements done by

the computer. This enhancement is very important be-

cause the human mind cannot decipher 3D objects

represented on a 2D computer screen effectively. We are

also unable to make accurate geometrical measurements.

In this case, the computer essentially provides the “ruler”

to make measurements.

Tumor segmentation

Accurate measurements are particularly important in

the case of surgery aimed at removing tumors. The size

of the tumor is an important prognostic factor for treat-

ment. 1D and 2D measurements such as tumor length,

the largest axis length or cross sectional area had been

used as a measure of tumor sizes. However, studies have

shown that tumor volume provides a more accurate esti-

mate of the tumor size [108,109]. Accurate measurement

of tumor sizes calls for effective segmentation of tumors.

Once properly segmented, the tumor size can be calcu-

lated trivially. Tumors occur in many parts of the human

body and different segmentation algorithms are devel-

oped for segmenting tumors in different organs. The lit-

erature in this area is vast. In the following, we focus on

liver tumors. Liver cancer accounts for about one mil-

lion deaths per year [110]. Segmentation is usually done

on computer tomography images. Many techniques have

been developed to segment liver and its tumor including

region growing [109,111], statistical techniques [109],

machine learning [108,109], active contours [112], fuzzy

c-means [113] and watershed [114].

Surgery planning also needs careful consideration of

the vasculature structure around the tumor and their re-

lationship with the tumor. Hence, segmentation of the

vasculature structure can aid the surgeon to visualize the

structure and location of vessels [115].

Concluding remarks
The development and implementation of analytical

and computational tools provided from the side of

bioinformatics and bioimaging analysis provide op-

portunities for quality interaction among biotechnol-

ogy, fundamental life science research and clinical

studies. Bioinformatics findings can be translated into

innovations that are adopted by the healthcare sys-

tem and biomedical industry in form of diagnostic

kits, analysis programs, etc. after the validation in

both bench and clinical studies. In this article, we

present several examples of how clinically relevant

conclusions can be drawn from sequencing, expres-

sion profiling or histopathological bioimaging data

with computational biology algorithms.

Unfortunately, considerable basic research is still

necessary to make full use of the potential opportun-

ities that are associated with the increasing availabil-

ity of high-throughput technologies such as genome

sequencing, mainly since most of the genome’s hid-

den functional information is not known; the under-

standing of biomolecular mechanisms that translate

genotype into phenotype is limited. But the progress

in this field is uneven; pathogen sequencing can

already provide important insights in contrast, for

example, to sequencing of cancer samples.

Since an efficient healthcare system must be

aligned to social, economic and political infrastruc-

ture of the country and focus on evidence-based

prophylactic, prevention, diagnosis, prognosis, predic-

tion and treatments that are proven to provide qual-

ity service and clinical outcome in a cost-effective

manner, genomics, proteomics and other new tech-

nologies will first have to demonstrate in a research

hospital setting that they can have a dramatic effect

in improving health care, also cost-wise in addition

to providing better quality of life, before the

approaches will penetrate the routine healthcare
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systems. Nevertheless, it is very clear that major

advances in diagnostics and treatments for infections

as well as cancers, circulatory and metabolic diseases

that are critical for improving most healthcare sys-

tems will arise from these developments in a medium

to longer time frame.

As we have seen above, genome information of patho-

gens linked with the geographic origin allows tracing the

spread of infections and parasites. Similarly, analyzing

the geographic, even better spatio-temporal distribution

of disease occurrences can provide hints for environ-

mental influences [116,117]. Generally, going beyond the

patient-centric approach and the linking of biomolecular

and clinical data of populations with geographic infor-

mation, data on food and environment, etc. will be an

important source for improving public health, for stop-

ping epidemics, for finding sources of food or environ-

mental poisoning and for improving life styles.
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