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Abstract: Mass spectrometry based proteomics analysis can produce many thousands of spectra in a single experiment, 

and much of this data, frequently greater than 50%, cannot be properly evaluated computationally. Therefore a number of 

strategies have been developed to aid the processing of mass spectra and typically focus on the identification and 

elimination of noise, which can provide an immediate improvement in the analysis of large data streams. This is mostly 

carried out with proprietary software. Here we review the current main principles underlying the preprocessing of mass 

spectrometry data give an overview of the publicly available tools. 
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1. INTRODUCTION 

 Mass spectrometry coupled with high performance liquid 
chromatography has become the de facto experimental 
standard for the proteomic analysis of complex biological 
materials such as tissue samples, biofluids, 
immunoprecipitates etc. [1]. Each sample produces several 
thousand spectra, and owing to the large amount and 
complexity of the data, interpretation of LC-MS/MS relies 
almost entirely on computational tools [2]. Despite recent 
technological advances, such as the improvement of mass 
accuracy and sensitivity, a large part of proteomics data is 
uninformative: many of the collected spectra are not easily 
interpreted, and it is not unusual to see cases where >50% of 
the collected spectra do not result in matches and even good 
quality spectra, which result in matches, can carry up to 80 
% extraneous peaks [3]. These poor results are the 
consequence of the inherent properties of the sample, the 
properties of the instrumentation and the drive to extract as 
much data as possible from the sample. This results in many 
spectra not being derived from true peptides. Removal of 
these extraneous data points can improve both the speed of 
analysis and the statistical confidence in the final results [3, 
4]. Consequently, preprocessing and filtering of the data are 
a major challenge. Some of the initial steps of the data 
cleaning process are carried out automatically, by the 
instrumentation’s proprietary onboard software, so the initial 
steps are often partly hidden from the experimenter. In 
addition, filtering steps can be included at later stages of the 
experimental pipeline, so the limits between filtering and 
data interpretation are often blurred. 

 The methods used for preprocessing MS spectra draw 
upon a number of disciplines, not all of which are included 
in standard bioinformatics curricula. The methods use 
various heuristics taken from diverse fields ranging from 
chemical computing to electronic signal processing. Finally, 
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there are strong ties to pattern classification, in particular to 
outlier detection, since data preprocessing can be viewed as 
the successive application of models in which part of the 
information is discarded at every step. One of the goals of 
this review is to place spectrum preprocessing methods into 
this general framework. We will concentrate on the most 
widely used approach, bottom up proteomics, where proteins 
are identified from the mass spectra of their proteolytic 
peptides [1]. There are a number of expert reviews on the 
general computational approaches of this field [5-7]. The 
goal of this article is to provide an introductory overview of 
spectrum preprocessing techniques for students and 
bioinformaticians who are not experts of LC-MS/MS.  

2. A PROTEOMICS EXPERIMENT 

 The goal of an LC-MS/MS experiment is to identify 
proteins in a sample – which can be a single protein, a 
relatively simple mixture of proteins, such as from an 
immuno-precipitation, or a complex mixture of proteins, 
such as from a lysate or biofluid. In a typical experiment, the 
protein sample is treated with a protease, typically trypsin, to 
create smaller peptides, which are more efficiently analyzed 
by the mass spectrometer. It is important to note that mass 
spectrometers can only analyze positively or negatively 
charged species and that the mass spectrometer does not 
directly measure the mass of the ion, rather its mass to 
charge ratio (m/z). 

 Liquid chromatography, or LC, is often used for 

introducing the peptides into the mass spectrometer and the 

solvents used for LC are largely compatible for this 

interface. The LC is also used to simultaneously remove 

impurities and concentrate the peptides. Perhaps most 

importantly, the chromatographic separation of the peptides 

gives the mass spectrometer more time to analyze the 

sample. A typical analysis entails an initial measurement of 

the m/z of the molecular species, or precursors, that are 

eluting from the LC. From this initial measurement, referred 

to as the precursor scan, a single precursor ion is selected, 

isolated from other precursors, and fragmented. The m/z of 

the resulting fragment ions, also called product ions, are 
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measured, which produce a fragment ion mass spectrum. In 

common usage, MS spectra are the precursor ion scans and 

MS/MS spectra are the fragment ion spectra. This workflow 

is often referred to as LC-MS/MS, or more generally as 

tandem mass spectrometry. Each MS/MS spectrum is 

typically associated with several important pieces of 

information used for final interpretation: the elution time of 

the precursor, the apparent mass of the precursor, the charge 

state of the precursor, the intensity of the precursor. The 

properties of this information are largely dependent on the 

instrumentation, how it is set up, the source of the sample, 

etc. There are many types of mass spectrometers used for 

proteomics studies and they can be broken into two artificial 

classes: high mass accuracy, such as QTOF and Fourier 

Transform instruments and low mass accuracy, such as ion 

trap or triple quadruple instruments. (see Table 1 for more 

information on specific types of mass spectrometer). It is 

even common to find instruments that produce high mass 

accuracy precursor spectra and low mass accuracy fragment 

ion spectra. Even the best mass spectrometers produce an 

imperfect dataset that contains both extraneous data and 

missing data. Additionally, there is always an error in the 

mass measurements, which can be expressed as a discrete 

error, 0.1 Da for example, or as a being relative term. The 

most common relative error term is part per million (ppm), 

which is very similar to percentage, except that ppm is 

normalized to 10
6
 rather than 100. For example, a peptide 

with an m/z of 1000 and a 0.1 Da error would have a relative 

error of 0.01% or 100 ppm. These problems are rarely 

encountered in other bioinformatics workflows and account 

for some of the complexity in analyzing proteomics data. 

The fragmentation of peptides in mass spectrometers has a 

well defined, but somewhat complicated, nomenclature [8]. 

A simplified diagram is shown in Fig. (1A), where the 

various types of backbone fragmentation are shown. In most 

cases, ladder ions form, in which the fragment ion extends 

from either the N-terminus of the peptide (a, b, and c ions) or 

from the C-terminus of the peptide (x, y, and z ions). 

However, sometimes internal fragment ions occur when the 

peptide backbone fragments in more than one place. For 

example, immonium ions are a special class of internal ions 

that are generated by a- and y- type fragmentation. 

Fragmentation of tryptic peptides by collision induced 

dissociation (CID) produces an information rich data stream 

with at least 5 detectable types, or series, of ions: b-ions, y-

ions, a-ions, and internal fragment ions (Fig. 1) [9]. The 

specific ion types generated is a function of the particular 

mass spectrometer being used. For example, immonium ions 

and internal ions are rarely seen in ion trap mass 

spectrometers [9]. Depending on the amino acid content of 

the peptide, neutral losses of water and ammonia also 

commonly appear in the spectra, but the final interpretation 

of spectra is usually dependent on the b- and y-ion series [4, 

10]. Fig. (1) also shows a few simple regularities that exist 

between the peaks of an MS/MS spectrum. Importantly, the 

ion series come in complementary pairs, for example b- and 

y- ions form from fragmentation of the same bond and sum 

up to the precursor mass +1. Similarly, successive ions in the 

same series will be separated by the mass of an amino acid, 

in the case of Fig. (1A) the mass difference between b2 and 

b3 is the mass of Methionine. The mass differences of these 

neighboring peaks, often called amino acid neighbors, can be 
easily calculated:  

kii massaabb _1 =+ ; 

kii massaayy _1 =+  (1) 

where bi and yi are the masses of the of the two ion series, 
and aa_massk is the mass of one of the 20 amino acid residue 
ions or one of its derivatives, obtained by post-translational 
modification. The masses of the complementary ion series 
can also be calculated because they add up to MH

+ 
+1, the 

mass of the precursor ion corresponding:  

1+=+ nini Pyb ; 

1+=+ nini Pby                                 (2) 

where n is the number of residues in the peptide (in Fig. 1, 
n=5). Substituting (2) into (1) we get 

knini massaaPyb _11 =++ ; 

knini massaaPby _11 =++                     (3) 

 Equations 1-3 are written for singly ionized species but 
can be extended to multiple ionization states (for example by 
applying equation 6). An ideal set of fragments, such as 
shown in Fig. (1), is sufficient to delineate the sequence of a 
peptide by de novo sequencing which is outside the scope of 
this article. Here we are concerned with using MS/MS 
spectra for identification of peptides, where the experimental 
spectra are compared to theoretical spectra derived from a 
protein sequence database (Fig. 1B). For this purpose, the 
spectra do not need to be perfect, just sufficiently free of 
peaks that would interfere with peptide identification. This 
spectral comparison approach, which is somewhat 
simplistically referred to as database searching, is 
computationally simpler and more robust than de novo 
sequencing or quantitative analysis.  

3. SIGNAL AND NOISE 

 The mass spectrum is considered a histogram where the y 
value is proportional to the quantity of detected ions, and the 
x value is proportional to mass/charge ratio (m/z) of the ion 
(Fig. 1B). In theory, an observed spectrum F(t), can be 
decomposed into baseline B(t), true signal S(t) and noise e(t) 
components, as shown in equation (4),  

)()()()( tetSNtBtF ++=                    (4) 

where N is a normalization factor. The true signal can be 
modeled as a sum of individual peaks corresponding to 
various molecular species present in the sample and their 
fragments that form within the mass spectrometer. In current 
MS devices the peaks of S(t) are typically narrow and their 
width at half height (FWHM), defines the resolution of the 
instrument, and can also be used to determine the uncertainty 
of the measurement. 

FWHM

P
resolution n=  

or 

Mass

P
resolution n=                  (5) 
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 The noise in a raw spectrum comes from various sources: 

electronic noise within the detector, chemical noise coming 

from contaminations (matrix molecules, molecular 

contaminants of the sample such as ingredients of buffers, 

solvents, etc.) [11, 12]. Although technically incorrect, in 

practice, anything that is not interpretable by the automated 

software is often labeled as noise. For example, in Fig. (1B) 

all the unlabeled peaks would be considered noise, even 

though some of these peaks may be coming from 

unanticipated fragmentation pathways. The goal of signal 

preprocessing is to convert a spectrum into a set of peaks 

that are subjected to further analysis. This step is also called 

low-level signal processing (Fig. 2). Since noise peaks can 

have roughly the same shape as true peaks, only some of the 

noise peaks are discarded as noise in this step. But even if all 

the noise were perfectly discarded, the remaining spectrum 

will still contain extraneous peaks. This has two main 

reasons: i) The isotope distribution of the sample will result 

in a series of isotope peaks that need to be recognized and 

discarded in a process called deisotoping, ii) in addition an 

ion may exhibit more than one charge state, so singly (z=1), 

doubly (z=2), and triply (z=3) ionized peaks will appear in 

the spectrum for what is essentially a single fragment. These 

are recognized by a process called charge-state 

deconvolution. Neither i) nor ii) are noise from the 

measurement’s point of view, but they cause complications 

when interpreting the data, this is why deisotoping and 

deconvolution are included in many current data 

preprocessing schemes. After these steps, the spectra are 

supposed to contain only true monoisotopic and singly 

ionized peaks. Even after these steps, there are additional 

problems: a) Some peaks may correspond to chemical 

contaminants or irregular fragmentation events – these need 

to be discarded by higher order peak-filtering. b) Some of 

the spectra may not contain sufficient material or contain a 

mixture of peptides or contaminants, rather than fragments 

from a single peptide. These spectra are eliminated by 

spectrum filtering. The entire process can be viewed as 

applying a series of models or filters in successive steps 

(Table 2). At each step we can define signal and noise at a 

different level. In the following parts we go through the 
various steps of this process. 

4. SIGNAL PREPROCESSING 

 Before low level signal processing two steps must be 

carried out: calibration and coarse peak detection. A 

calibration step maps the observed electronic signals to the 

inferred mass to charge ratio. This is carried out by mass 

standards, such as synthetic peptides which are used either as 

external or internal standards. In this step, the x axis of the 

spectrum is transformed, often by a nonlinear 

transformation. The conversion formulas are determined 

with the help of reference ions [13, 14], often by a fitting 

procedure [15]. For singly charged ions <4,000 Da, peptide 

masses can be calibrated even without reference ions, based 

on the observation that m/z values are concentrated in 

narrow ranges separated by 1.000045 Da [16]. The resulting 

m/z errors can be usually quite low (10 ppm for Fourier 

transform instruments). In LC-MS/MS experiments the 

intensity values (y-axis) are often expressed on a relative 

scale as accurate quantification of raw intensity is usually 

not required [17].Coarse peak detection is location of 

maxima in terms of m/z values. The simplest way of doing 

this is to pick the maximum of the peaks. A more accurate 

method is to take a portion of the top most intensive values 

and calculate their centers, this is why this step is often 

referred to as centroiding (Fig. 2). Importantly during the 

coarse peak detection the centroiding step may or may not 

result in a data reduction (see below for more details). In 

addition to simple heuristics there are a number of more 

advanced transforms, such as wavelet transforms [18, 19], 

Bayesian peak detection [20] or Gabor filters [21, 22] that 

can extract peaks from raw spectra with minimal 

parameterization. These techniques belong to a broad group 

of signal processing algorithms that are used within the 

engineering community. They offer advantages for handling 

large groups of spectra, but the lack of common parameters 

applicable to all spectra remains a fundamental problem left 

to the experimenter. Current mass spectrometers often 

contain software that takes care of many of these steps and is 

often done automatically during data collection and remains 

somewhat hidden from the experimenter. In addition, most 

methodologies combine several steps. 

Table 1. Major Types of Instruments 

Instrument Typcial Mass Accuracy Strengths Weaknesses 

Ion Trap (IT) ~500 ppm Produces the most predictable fragmentation 

pattern. Fast, sensitive analysis. 

Low mass accuracy causes a high false 

discovery rate. Masses >28%< of the 

precursor mass are lost. 

QTOF 5-100 ppm Produces high mass accuracy for both MS and 

MS/MS spectra 

Typically, slower than ion traps, 

especially for producing MS/MS spectra. 

There can be difficulties in interpreting 

the MS/MS spectra. 

Fourier Transform 

(FT) 

<5 ppm Mass accuracy. Non destructive mass measure. 

Incredibly high signal to noise ratios. 

Slow 

FT-IT hybrid 

including 

the Orbitrap 

5-20 ppm Precursor Scan 

500ppm MS/MS spectra. 

Mass accuracy in MS. The two mass analyzers 

allow for parallel analysis, so while the FT is 

producing high mass accuracy precursor scans, the 

IT is producing many Fragment ion scans. Is 

considered the premier proteomics workhorse. 

MS/MS spectra have similar mass 

accuracies as a standalone IT. 
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5. SPECTRUM PROCESSING 

 A MS/MS spectrum often contains multiple forms of the 
exact same peptide fragment. These different forms may 
arise either because the peptide has more than one stable 
charge state (charge clusters) or because the peptide contains 
several heavy isotopes of its elemental composition. For 
biological samples, these isotopic clusters, or envelopes, are 
dominated by the stable isotopes of Carbon. The calibration 
and coarse peak calling steps are required before these 
additional problems can be corrected. The goal of the next 
steps of preprocessing is to obtain a MS/MS spectrum in 
which each ion is represented by a single peak, so the 
clusters must be identified and replaced by a single peak.  

Charge State Deconvolution 

 It is common for a peptide (or fragment) to have more 
than one charge state. These multiple charge states make the 

MS/MS spectrum difficult to interpret and the additional 
charge states add little valuable information. For example, it 
is not uncommon to find a single peptide existing as a +1, a 
+2 and a +3 ion. This results in three distinct peaks 
appearing and the observed m/z follows this relationship:  

z

Hz
zm

*eightMolecularW
/

+=                (6) 

where z is the number of charges and H is the mass of a 
proton. For example a peptide with a molecular weight of 
1000, would have a m/z of 1001 for z=1, 501 for z=2, and 
334.33 for z = 3. It is common practice to report the singly 
charged mass (MH

+
), even when multiply charged ions are 

measured. The process of deconvolution involves identifying 
peaks that arise from these multiple charge states. Once such 
a cluster is identified, the intensities are summed to the most 
intense peak and the rest of the cluster members get 

 

Fig. (1). Anatomy of a peptide MS/MS spectrum. A) Example of a spectrum that has been matched to peptide sequence 

RLSEETTEFSLGGIFLK. For example b3 and y14 sum to the precursor mass. B) Simplified fragmentation pattern of a peptide. In the mass 

spectrometer, a peptide breaks into two parts at various points of the peptide backbone (top). Of these, the N-terminal b- and C-terminal y- 

ions (bottom) carry most of the information. 

Table 2. Steps of Data Preprocessing in MS-Based Proteomics. 
 

 Levels of preprocessing Operation  Signal Noise 

1 Detector signal Signal preprocessing 

 Calibration 

 Coarse peak dentification 

Peak (shape) Baseline 

2 Peak cluster level Spectrum processing 

 Charge state deconvolution, 

 Deisotoping 

Peak clusters with correct structure 

(united into single peaks) 

No clusters, bad periodicities 

etc. 

3 Spectrum level Data filtering 

 Peak filtering, 

 Spectrum filtering 

Peak (correct intensity, spatial 

distribution) 

Noise peaks, noise spectra 

4 Peptide level Clustering of spectra Spectrum clusters Outliers 
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removed. Charge clusters are typically problematic for 
MS/MS spectra only when the charge state of the precursor 
ion is greater than 3. For tryptic fragments, this is a fairly 
uncommon event and charge state deconvolution is 
frequently skipped. 

Deisotoping or Monoisotoping 

 Attempts to simplify the cluster of ions – sometimes 
called isotopic envelopes - that forms because of the 
naturally occurring heavy isotopes (Fig. 3). For example, the 
element Carbon contains 6 protons and 6 neutrons, giving it 
a mass of ~12 Da. However about 1% of the Carbon has 7 
neutrons, which makes it a slightly heavier ~13 Da. For the 
average sized peptide with 50 Carbon atoms, this results in 
the monoisotopic peak, which contains only light atoms 
being about 50% of the total, the +1 

13
C peak is ~30% of the 

total, and the +2 
13

C is 13% of the total and so on. Typically 
3 to 6 isotopic peaks are detectable with modern day 
instruments and the specific ratios between the peaks 
depends on the size of the peptide, as the greater the number 
of Carbons in a peptide, the more likely you are to find a 
heavy isotope of Carbon. Unlike the multiple charge states, 
the isotope peaks can be highly informative and can give 
clues to the elemental composition and whether or not it is a 
true peak or a noise peak [23]. In fact, the isotope pattern can 
also reveal the charge state of the peak and is often used for 
this purpose [24]. Using our previous example of the 1000 
molecular weight peptide, with z=1 the isotopic peaks will 
be spaced every 1 Da (the mass of the neutron / 1), with z=2 
the isotopic peaks will be spaced every 0.5 Da (the mass of 
the neutron/ 2), and with z=3 the isotopic peaks will be 
spaced every 0.3 Da (the mass of the neutron / 3). Therefore, 
this isotopic spacing is an efficient means of deconvoluting 
spectra and converting all m/z values to the +1 charge state. 
Since there is extra information in the isotopic pattern, 
charge state deconvolution is usually applied before 
deisotoping. In the process of deisotoping, the series of an 
isotopic envelope are identified, removed from the spectrum 
and replaced by the monoisotopic peak. The intensity either 
remains unchanged, or, more commonly, the intensity is 
transformed by summing the intensity of all the peaks in the 
isotope envelope.  

 Even though the intensity distribution and the m/z 
distribution of the clusters can be reliably calculated, 
problems arise if isotopic clusters and/or charge clusters 

overlap with each other. Deconvolution of overlapping 
clusters is especially complicated when a spectrum is derived 
from more than one peptide, for detailed discussion on this 
subject see Bern et al. 2010 [25]. One of the major goals of 
these steps is data reduction. The data reduction can be quite 
dramatic, with full profile spectra typically being 10-200 
times larger than their centroided derivatives. At this point in 
the workflow, relatively simple strategies have been used for 
data reduction and the result should be a reliable list of peaks 
that can be used for more complex algorithms. 

6. DATA FILTERING STRATEGIES 

 There are two strategies for producing high quality 

spectra: i) Peak filtering and ii) Spectrum filtering. i) Peak 

filtering approaches identify unwanted peaks, including 

 

Fig. (2). Conversion of a profile spectrum into peaks (peak centroiding). The centroided values are picked either as the maximum of the 

peak, or an intensity-weighted average of the values above the half maximum intensity (inset). Note that the profile data (top) are retained 

after the peaks have been identified. 

 

Fig. (3). Charge clusters and isotope clusters of a single peptide 

fragment. 
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noise peaks, and remove them from the spectra. Noise peaks 

are identified either by their low intensities or by the fact that 

they do not obey the fragmentation rules (eqn. 1-3). The 

fundamental goal is to increase the reliability of database 

searching as well as to save storage space (data compression) 

ii) Spectrum filtering approaches, on the other hand, try to 

identify low quality spectra by their peculiar intensity or m/z 

distributions and excluding them from further analysis. The 
two approaches are not necessarily mutually exclusive.  

Peak Filtering 

 Noise peaks can have shapes that are similar to true 
peaks, which make them difficult to identify using simple 
classification schemes. One relatively reliable approach is to 
differentiate based on intensity. This case is driven by the 
assumption that true peaks (or signal) tend to be of higher 
intensity than unwanted (noise peaks) [26]. This often leads 
to problems, as peptides do not fragment uniformly along 
their backbone and can result in high intensity peaks 
clustering with in a spectrum [3]. Renard and associates 
distinguished various simple intensity filters [3]:  

 “Intensity thresholding” only peaks above a certain 
intensity threshold are retained, the threshold can be defined 
as a percentage (typically ~5%) of the highest intensity [4].  

 “Top X intensity” filters sort all ions by decreasing 
intensity and keep the first n ions [26, 27]. The top 60 to 100 
peaks gives good results for many datasets, even though 
small peptides may have less that 100 peaks, while big 
peptides have many more than that. However one can also 
note that a peptide cannot have more b,y,a and immonium 
ions than 4 times the number of its amino acids, so in 
principle one can define X as a function of the molecular 
precursor mass of the peptides 

8.120

+
= MH

kX            (7) 

where MH
+
 is the precursor mass, 120.8 is the approximate 

mass of the average amino acid and k is a scaling factor. 

“Top X in Y regions” filters aim to alleviate the problem that 

high intensity peaks may cluster in certain parts of the 

spectrum. In this case the spectrum is divided into Y equal 

regions (defined with a certain overlap), and the top X 
intensities are retained in each of the regions [3]. 

“Top X intensity in a window of +/- Z” approaches, first sort 

the peaks by decreasing intensity, then, starting with the 

highest intensity peak, retain the top X intensities in a 

window of +/- Z m/z right and left from the most intensive 

peak and exclude all other peaks. This is repeated until all 

peaks are selected or rejected [4, 28]. The Z is usually set to 

be smaller than the mass of an amino acid, because there 

should not be many true peaks with spacing less than that of 

an amino acid and X is usually set to 1 or 2 to account for 

ions from two different ion series occurring in the same 
small window [4]. 

 A more sophisticated algorithm, THRASH, estimates the 

signal to noise ratio for each peak within a window of +/- Z 

(Z ~25 Da), using a histogram of frequency vs. intensity 

within the window [29]. The noise is calculated by the full 

width at half maximum (FWHM) of the smooth histogram, 

as the most frequent intensity value within the window, Ib is 

used as background intensity, so for a peak of Ip intensity, 
the signal to noise ratio is calculated as  

FWHM

II
NS

bp=/                                       (8) 

and peaks above a threshold level are accepted, repeating the 
selection of overlapping windows along the spectrum. 

 In addition to these simple assumptions, one can use the 
fragmentation rules or other chemical rules to select peaks 
that are not likely to be noise. Bern (2007) used peaks 
obeying eq (1) to identify high quality spectra [30]. Ning and 
Leong used the same rule for adding pseudo-peaks (peaks 
originally not present in the spectrum) in order to increase 
the performance of peptide sequencing [31]. Reiz and 
associates designed a peak-filter that only retains peaks that 
obey at least one of equations (1-3) [32]. 

Spectrum Filtering  

 The goal of spectrum filtering is to distinguish high and 
low quality spectra. The goal is either to exclude low quality 
spectra from further analysis by database searching (pre-
filtering), or to find potential high quality spectra in a set 
discarded by database searching, and to submit them to a 
second round of database search (post-filtering).  

 Low quality spectra (Fig. 4) are typically either i) noise 
spectra that are either of too low intensity or do not contain 
sufficient peptide peaks (in number or in intensity); or ii) 
contaminated spectra that contain high amounts of certain 
common contaminants (polymers, protein contaminants); or 
iii) spectra that contain a mixture of peptides that would 
hamper peptide identification by database search. Noise 
spectra have a relatively uniform intensity distribution, with 
no obvious amino acid spacing between the peaks, and the 
isotope distributions are different from that of peptides. 
Mixture spectra contain too many high intensity peaks that 
have the characteristic isotopic distribution of peptides, but 
many of the high intensity peaks are closer to each other than 
the molecular weight of an amino acid. In principle, some of 
these problems would require different approaches. Same as 
with peak filtering, quality control of spectra relies on the 
analysis of the intensity distributions and the m/z distribution 
of the peaks and may also include specific treatment of 
amino acid, isotope and/or charge series. The resulting 
algorithms are quite diverse in scope, and in addition to 
simple chemical heuristics it is customary to determine some 
of the decision parameters by learning from datasets of high 
and low quality spectra.  

 Bern et al (2004) used several handcrafted features of 
varying sophistication (number of peaks, identities, number 
of possible amino acid pairs and b-pairs within a certain 
tolerance, etc.) to train Quadratic Discriminate Analysis 
(QDA) classifiers on datasets in which spectra identified by 
the SEQUEST algorithm were denoted good, all others as 
bad [33]. The best classifier combination could identify 75% 
of the unidentifiable spectra while discarding only 10% of 
the identifiable spectra.  

 Xu and associates used parameters related either to peak 
intensity (number of peaks above adjustable thresholds of 
peak intensity, % total ion current, etc.) or to peak spacing 
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(average distances between peaks in various intensity ranges) 
to construct a QDA discriminant function parameterized on 
manually validated datasets [34]. The resulting classifier was 
able to recover many high quality spectra unassigned by 
commercial search engines. 

 Flikka and associates used a straightforward learning 
approach based on 17 general spectrum parameters 
(including the number of peaks, peaks over 0.1 relative 
intensity, no of significant peaks divided by precursor mass, 
etc.) that were combined to build a committee of classifiers 
trained on datasets in which spectra identified by the 
MASCOT algorithm were denoted high quality, all others as 
low quality [35]. It was found that a trained classifier could 
identify half of the unidentified spectra as bad, and many of 
the unidentified peptides predicted as high quality could be 
confirmed as correct hits. 

 Nesvizhskii and associates designed a learning algorithm 
that is based on 40 spectrum features [36]. Part of these are 
general spectrum parameters, another part is related to short 
amino acid reads, and another part of them are related to the 
number of b- ions, y- ions and b-y pairs that correspond to 
the charge state of the precursor. The quality scores 
computed for individual features are combined into a linear 
discriminant function which is parameterized on datasets of 
good and bad spectra, pre-labeled by MASCOT analysis.  

 Hoopman and associates built a sophisticated 
preprocessing algorithm, Hardklör, that is based on the 
analysis of Peptide Isotope Distribution (PIDs) in 5 distinct 
steps [23]: 1) A THRASH-style peak finding [29], 2) Charge 
state estimation, 3) Averagine  

 Modeling and Monoisotopic Mass prediction [37]; 4) 
Unusual PID detection and 5) Analysis. The Averagine 
model of McLafferty and associates [37] uses the weighted 
average of the elemental composition of amino acids found 
in proteins for estimating the PID of a polypeptide and 
deviations above a certain threshold are considered as 
unusual. The accepted PIDs are then compared to observed 
data in a combinatorial fashion and combinations that exceed 

a certain similarity threshold are accepted. This process 
allows recovery of a large portion of unidentified spectra, the 
authors estimated that over 11% of the MS-MS spectra in 
their dataset were composed of fragment ions from multiple 
molecular species. 

7. SPECTRUM CLUSTERING 

 Clustering of spectra is a logical step since the spectrum 
of a peptide may be taken several, sometimes many times 
during the same experiment so joining (summing or 
averaging) nearly identical spectra can increase accuracy and 
save storage memory at the same time. The advantages and 
pitfalls of clustering proteomics data are not dissimilar to 
those seen in other fields. Several groups developed 
clustering methods capable of handling large spectrum 
datasets [38-43] and the individual strategies differ in many 
fine details, regarding how the clusters are represented, when 
new members are allowed to join etc. All these details will 
influence the sensitivity of protein identification since low 
quality spectra that often represent the most interesting 
biological objects, may be misclassified and/or eliminated by 
mistake. On the other hand, clustering of spectra has specific 
benefits as it can help one to recognize and eliminate known 
protein/peptide contaminants, or highlight non-peptide 
contaminants such as polymers with characteristic, non-
peptidic periodicities in their spectra. Common-sense 
grouping scenarios were included in the earliest work, for 
instance Yates and associates grouped spectra based on the 
precursor mass and chromatographic elution time [44]. This 
method merges MS/MS spectra from the same liquid 
chromatography peak. Furthermore, spectra of post-
translationally modified (PTM) and unmodified versions of 
the same fragment can be clustered together, which helps 
one to detect PTMs [40, 45]. However, this typically requires 
a more sophisticated algorithm as the modified and 
unmodified peptides rarely have the same chromatographic 
elution time [40, 45]. 

8. PROGRAMS 

 Most laboratories make use of the platform-specific and 
proprietary preprocessing programs provided by the 
instrument manufacturers. Some of the publicly available 
programs are listed in Table 3. The publicly available 
R/Bioconductor program package and MATLAB contain 
tools for processing mass spectra. 

9. CONCLUSIONS AND PERSPECTIVES 

 A typical proteomics experiment produces a large, 

information-rich data stream. The workflow produces a large 

amount of extraneous data that can hamper the final analysis. 

This extra data takes the form of redundant peaks, such as 

multiple charge states, chemical and detector noise, 

unanticipated peaks and isotope clusters. The raw data is 

rarely used directly and is subject to several signal 

processing steps. The overall goal of signal processing is to 

remove these redundant peaks, such as multiple charge 

states, chemical and detector noise, unanticipated peaks and 

isotope clusters. The raw data is rarely used directly and is 

subject to several signal processing steps. This removal 

results not only in more efficient analysis, but also aids in the 
storage and transfer of data between analysis programs. 

 

Fig. (4). Typical MS/MS spectra after charge deconvolution and 

deisotoping. The inset is the frequency distribution of the spectra.  
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 Before, even rudimentary, signal processing can begin 
the spectrum is usually calibrated and a coarse peak calling 
is performed. The coarse peak calling will determine the 
features that signal processing algorithms will consider and 
the calibration ensures that the algorithms will use the 
highest accuracy data obtainable. 

 The signal processing algorithms discussed here are 
based on two fundamental kinds of descriptions of mass 
spectra: unstructured and structured. Unstructured 
descriptions typically use aggregate variables of the 
spectrum, such as the number of peaks, average or maximum 
intensities, distributions, etc., and employ general 
computational approaches also used in other fields such as 
optical or acoustic signal processing. Methods using 
unstructured descriptors are simple to understand and to 
implement, and the algorithms are often very fast. However 
the parameterization is usually not universal, for instance 
there are no general intensity thresholds, etc. As a result, the 
unstructured classifiers typically have to be adjusted in such 
a way that there is a balance between retaining unwanted 
peaks and discarding valuable peaks. On the other hand, 
structured descriptions use discrete variables, such as inter-
peak relationships such as those that correlate with amino 
acid masses, isotope distributions, or other behaviors 
consistent with peptide sequence, and the computational 
approaches based on them are specific to proteomics. Once 
structure is introduced into the classifiers (even at such a 
modest level as Fourier transformation of the signals) the 
efficiency of the classifier increases. However, the principles 
of structured classifiers are often more difficult to 
implement. 

 The current development of instrumentation is geared 
towards faster and faster data acquisition. An instrument 
with fast data acquisition is ideal for the bottom up work 
flow, as these instruments will perform more analyses on the 
sample than slower instruments. There is another trend to 
move towards the analysis of intact proteins without enzyme 
digestion, the so called top down workflow. Although the 
top down workflow will result in simpler samples, which 
will generate fewer spectra, the protein spectra are more 
complex than peptide spectra. Therefore, there is a growing 
need for computational methods that can efficiently process 
peptide and protein based spectra. These will undoubtedly be 
a mixture of signal processing algorithms borrowed from 
other fields and algorithms designed specifically for features 
found in peptide or protein spectra. 

CONFLICT OF INTEREST 

 None declared. 

ACKNOWLEDGEMENT 

 None declared. 

REFERENCES 

[1] Aebersold R, Mann M. Mass spectrometry-based proteomics. 

Nature 2003; 422(6928): 198-207. 
[2] Webb-Robertson BJ, Cannon WR. Current trends in computational 

inference from mass spectrometry-based proteomics. Briefings in 
bioinformatics. 2007; 8(5): 304-17. 

[3] Renard BY, Kirchner M, Monigatti F, et al. When less can yield 
more - Computational preprocessing of MS/MS spectra for peptide 

identification. Proteomics 2009; 9(21): 4978-84. 
[4] Geer LY, Markey SP, Kowalak JA, et al. Open mass spectrometry 

search algorithm. J Proteome Res. 2004; 3(5): 958-64. 

Table 3. Non-Commercial, Publicly Accessible Programs for Preprocessing Mass Spectra. 
 

Decon2LS: charge state deconvolution, deisotoping, peak detection  

 download from: http: //omics.pnl.gov/software/Decon2LS.php 

ProteinProspector_MS-isotope: not useful for preprocessing, but accurately predicts isotope pattern from a given amino acid sequence. 

 web interface: http: //prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msisotope 

ms-deconv: charge state deconvolution and deisotoping 

 download from: http: //bix.ucsd.edu/projects/msdeconv/software.html 

msclustering: clustering of peptide MS/MS spectra. 

 download from: http: //proteomics.ucsd.edu/Software/MSClustering.html#download 

ms2preproc: Preprocessing of MS/MS spectra. Multiple intensity based peak filtering  

 download from: http: //software/steenlab/ms2preproc/ms2prepcroc.zip 

Nitpick: Averagine based deconvolution and peak picking. 

 download from: http: //hci.iwr.uni-heidelberg.de/mip/proteomics/ 

Hardklor: Deconvolution, deisotoping, peak calling. 

 download from: http: //proteome.gs.washington.edu/software/hardklor/index.html 

MS/MS Spectra Preprocessor: Quality based spectral filtering. Based on Intensity or amino acid spacing. 

 download from: http: //omics.pnl.gov/software/MSMSSpectraPreprocessor.php 

MS/MS Spectra Preprocessor: Quality based spectral filtering. Based on Intensity or amino acid spacing. 

 download from: http: //omics.pnl.gov/software/MSMSSpectraPreprocessor.php 

Peak filtering based on intensity and peak density  

 Download from http: //www.childrenshospital.org/research/steenlab 

CSfilter, peak filtering based on fragmentation rules.  

 Webpage at: http: //net.icgeb.org/servers/protein/MSfilters/ 



Data Preprocessing and Filtering in Mass Spectrometry Based Proteomics Current Bioinformatics, 2012, Vol. 7, No. 2      9 

[5] McHugh L, Arthur JW. Computational methods for protein 

identification from mass spectrometry data. PLoS Comput Biol 
2008; 4(2): e12. 

[6] Nesvizhskii AI. A survey of computational methods and error rate 
estimation procedures for peptide and protein identification in 

shotgun proteomics. J Proteomics 2010; 73(11): 2092-123. 
[7] Nesvizhskii AI. Protein identification by tandem mass spectrometry 

and sequence database searching. Methods Mol Biol 2007; 367: 87-
119. 

[8] Roepstorff P, Fohlman J. Proposal for a common nomenclature for 
sequence ions in mass spectra of peptides. Biomed Mass Spectrom 

1984; 11(11): 601. 
[9] Mitchell Wells J, McLuckey SA, Burlingame AL. Collision 

Induced Dissociation (CID) of Peptides and Proteins. Methods 
Enzymol Academic Press 2005: 148-85. 

[10] Craig R, Beavis RC. Tandem: matching proteins with tandem mass 
spectra. Bioinformatics 2004; 20: 1466-7. 

[11] Hu J, Coombes KR, Morris JS, Baggerly KA. The importance of 
experimental design in proteomic mass spectrometry experiments: 

some cautionary tales. Brief Funct Genomic Proteomic 2005; 3(4): 
322-31. 

[12] Baggerly KA, Morris JS, Wang J, Gold D, Xiao LC, Coombes KR. 
A comprehensive approach to the analysis of matrix-assisted laser 

desorption/ionization-time of flight proteomics spectra from serum 
samples. Proteomics 2003; 3(9): 1667-72. 

[13] Vestal M, Juhash P. Resolution and mass accuracy in matrix-
assisted laser desorption ionization time-of-flight. J Am Soci Mass 

Spectrom 1998; 9: 892-911. 
[14] Christian NP, Arnold RJ, Reilly JP. Improved calibration of time-

of-flight mass spectra by simplex optimization of electrostatic ion 
calculations. Anal Chem 2000; 72(14): 3327-37. 

[15] Hack CA, Benner WH. A simple algorithm improves mass 
accuracy to 50-100 ppm for delayed extraction linear matrix-

assisted laser desorption/ionization time-of-flight mass 
spectrometry. Rapid Commun Mass Spectrom 2002; 16(13): 1304-

12. 
[16] Gay S, Binz PA, Hochstrasser DF, Appel RD. Modeling peptide 

mass fingerprinting data using the atomic composition of peptides. 
Electrophoresis 1999; 20(18): 3527-34. 

[17] Zubarev R, Mann M. On the proper use of mass accuracy in 
proteomics. Mol Cell Proteomics 2007; 6(3): 377-81. 

[18] Coombes KR, Tsavachidis S, Morris JS, Baggerly KA, Hung MC, 
Kuerer HM. Improved peak detection and quantification of mass 

spectrometry data acquired from surface-enhanced laser desorption 
and ionization by denoising spectra with the undecimated discrete 

wavelet transform. Proteomics 2005; 5(16): 4107-17. 
[19] Du P, Kibbe WA, Lin SM. Improved peak detection in mass 

spectrum by incorporating continuous wavelet transform-based 
pattern matching. Bioinformatics 2006; 22(17): 2059-65. 

[20] Jianqiu Z, Xiaobo Z, Honghui W, et al. Bayesian peptide peak 
detection for high resolution TOF mass spectrometry. IEEE Press 

2010: 5883-94. 
[21] Nguyen N, Huang H, Oraintara S, Vo A. GaborLocal: peak 

detection in mass spectrum by Gabor filters and Gaussian local 
maxima. Comput Syst Bioinform Conf 2008; 7: 85-96. 

[22] Nguyen N, Huang H, Oraintara S, Vo A. Peak detection in mass 
spectrometry by Gabor filters and envelope analysis. J Bioinform 

Comput Biol 2009; 7(3): 547-69. 
[23] Hoopmann MR, Finney GL, MacCoss MJ. High-speed data 

reduction, feature detection, and MS/MS spectrum quality 
assessment of shotgun proteomics data sets using high-resolution 

mass spectrometry. Anal Chem 2007; 79(15): 5620-32. 
[24] Klammer AA, Wu CC, MacCoss MJ, Noble WS. Peptide charge 

state determination for low-resolution tandem mass spectra. Proc 
IEEE Comput Syst Bioinform Conf 2005: 175-85. 

[25] Bern M, Finney G, Hoopmann MR, Merrihew G, Toth MJ, 
MacCoss MJ. Deconvolution of mixture spectra from ion-trap data-

independent-acquisition tandem mass spectrometry. Anal Chem 
2010; 82(3): 833-41. 

[26] Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA, 
Burlingame AL. Mass spectrometric analysis of protein mixtures at 

low levels using cleavable 13C-isotope-coded affinity tag and 

multidimensional chromatography. Mol Cell Proteomics 2003; 
2(5): 299-314. 

[27] Chalkley RJ, Baker PR, Huang L, et al. Comprehensive analysis of 
a multidimensional liquid chromatography mass spectrometry 

dataset acquired on a quadrupole selecting, quadrupole collision 
cell, time-of-flight mass spectrometer: II. New developments in 

Protein Prospector allow for reliable and comprehensive automatic 
analysis of large datasets. Mol Cell Proteomics 2005; 4(8): 1194-

204. 
[28] Tanner S, Shu H, Frank A, et al. InsPecT: identification of 

posttranslationally modified peptides from tandem mass spectra. 
Anal Chem 2005; 77(14): 4626-39. 

[29] Horn DM, Zubarev RA, McLafferty FW. Automated reduction and 
interpretation of high resolution electrospray mass spectra of large 

molecules. J Am Soc Mass Spectrom 2000; 11(4): 320-32. 
[30] Bern M, Cai Y, Goldberg D. Lookup peaks: a hybrid of de novo 

sequencing and database search for protein identification by 
tandem mass spectrometry. Anal Chem 2007; 79(4): 1393-400. 

[31] Ning K, Leong HW. Algorithm for peptide sequencing by tandem 
mass spectrometry based on better preprocessing and anti-

symmetric computational model. Comput Syst Bioinform Conf 
2007; 6: 19-30. 

[32] Reiz B, Kertesz-Farkas A, Pongor S, Myers MP. Chemical rule-
based filtering of MS/MS spectra. in press. 2011. 

[33] Bern M, Goldberg D, McDonald WH, Yates JR, 3rd. Automatic 
quality assessment of peptide tandem mass spectra. Bioinformatics. 

2004; 20(Suppl 1): i49-54. 
[34] Xu M, Geer LY, Bryant SH, et al. Assessing data quality of peptide 

mass spectra obtained by quadrupole ion trap mass spectrometry. J 
Proteome Res 2005; 4(2): 300-5. 

[35] Flikka K, Martens L, Vandekerckhove J, Gevaert K, Eidhammer I. 
Improving the reliability and throughput of mass spectrometry-

based proteomics by spectrum quality filtering. Proteomics 2006; 
6(7): 2086-94. 

[36] Nesvizhskii AI, Roos FF, Grossmann J, et al. Dynamic spectrum 
quality assessment and iterative computational analysis of shotgun 

proteomic data: toward more efficient identification of post-
translational modifications, sequence polymorphisms, and novel 

peptides. Mol Cell Proteomics 2006; 5(4): 652-70. 
[37] Senko MW, Beu SC, McLafferty FW. Automated assignment of 

charge states from resolved isotopic peaks for multiply charged 
ions. J Am Soc Mass Spectrom 1995; 6(1): 52-6. 

[38] Beer I, Barnea E, Ziv T, Admon A. Improving large-scale 
proteomics by clustering of mass spectrometry data. Proteomics 

2004; 4(4): 950-60. 
[39] Flikka K, Meukens J, Helsens K, et al. Implementation and 

application of a versatile clustering tool for tandem mass 
spectrometry data. Proteomics 2007; 7(18): 3245-58. 

[40] Frank AM, Bandeira N, Shen Z, et al. Clustering millions of 
tandem mass spectra. J Proteome Res 2008; 7(1): 113-22. 

[41] Gentzel M, Kocher T, Ponnusamy S, Wilm M. Preprocessing of 
tandem mass spectrometric data to support automatic protein 

identification. Proteomics 2003; 3(8): 1597-610. 
[42] Tabb DL, MacCoss MJ, Wu CC, Anderson SD, Yates JR, 3rd. 

Similarity among tandem mass spectra from proteomic 
experiments: detection, significance, and utility. Anal Chem 2003; 

75(10): 2470-7. 
[43] Tabb DL, Thompson MR, Khalsa-Moyers G, VerBerkmoes NC, 

McDonald WH. MS2Grouper: group assessment and synthetic 
replacement of duplicate proteomic tandem mass spectra. J Am Soc 

Mass Spectrom 2005; 16(8): 1250-61. 
[44] Yates JR, 3rd, Eng JK, McCormack AL, Schieltz D. Method to 

correlate tandem mass spectra of modified peptides to amino acid 
sequences in the protein database. Anal Chem 1995; 67(8): 1426-

36. 
[45] Savitski MM, Nielsen ML, Zubarev RA. ModifiComb, a new 

proteomic tool for mapping substoichiometric post-translational 
modifications, finding novel types of modifications, and 

fingerprinting complex protein mixtures. Mol Cell Proteomics 
2006; 5(5): 935-48. 

 

 

Received: April 06, 2011 Revised: July 15, 2011 Accepted: July 18, 2011 


