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Preface

This volume contains 38 extended and short abstracts presented at the 22nd Interna-
tional Conference on Research in Computational Molecular Biology (RECOMB) 2018,
which was hosted by the Pierre et Marie Curie Campus of Sorbonne Université in Paris,
April 21–24.

These 38 contributions were selected from a total of 193 submissions. Each sub-
mission was reviewed by three members of the Program Committee (PC), who in many
cases solicited additional advice from external reviewers. Following the initial reviews,
final decisions were made after an extensive discussion of the submissions among the
members of the PC. Reviews and discussions were conducted through the EasyChair
Conference Management System.

While RECOMB 2018 did not allow parallel submissions, authors of accepted
papers were given the option to publish short abstracts in these proceedings and submit
their full papers to a journal. In addition, several accepted papers were invited to submit
revised manuscripts for consideration in Cell Systems. Papers accepted for oral pre-
sentation that were subsequently submitted to a journal are published as short abstracts
and were deposited on the preprint server arxiv.org or biorxiv.org. All other papers that
appear as long abstracts in the proceedings were invited for submission to the
RECOMB 2018 special issue of the Journal of Computational Biology.

In addition to presentations of these contributed papers, RECOMB 2018 also
featured six invited keynote talks given by leading scientists. The keynote speakers
were Peter Campbell (Sanger Institute), Nevan Krogan (University of California,
San Francisco), Ron Shamir (Tel Aviv University), François Spitz (Institut Pasteur),
Sarah Teichmann (Sanger Institute), and Tandy Warnow (University of Illinois, Urbana
Champaign).

RECOMB 2018 also featured highlight talks of computational biology papers that
were published in journals during the previous 18 months. Of the 27 highlight sub-
missions, seven were selected for oral presentation at RECOMB.

The success of RECOMB depends on dedicated efforts and a substantial investment
of time from many colleagues. I especially thank the co-chairs of the Organizing
Committee, Mireille Régnier (Ecole Polytechnique) and Yann Ponty (CNRS, Ecole
Polytechnique), for hosting RECOMB; the Steering Committee and especially its chair,
Bonnie Berger (MIT), for help, advice, and support throughout the process;
Cenk Sahinalp (Indiana University), the Program Chair of RECOMB 2017, for
answering my many questions; Ziv Bar Joseph (CMU) for chairing the highlights track;
Christina Boucher (University of Florida) for chairing the poster track; Mohammed
El-Kebir (UIUC) for serving as the publications chair; Alessandra Carbone (Sorbonne
Université) for acting as the publicity chair; Hélène Touzet (CNRS, Université Lille I)
for organizing the RECOMB Satellites; Mark Chaisson (University of Southern
California), Rayan Chikhi (CNRS, University of Lille, France), Valentina Boeva
(Institut Cochin and Inserm), Moritz Gerstung (EMBL-EBI), Hugues Aschard (Institut

https://arxiv.org
https://www.biorxiv.org


Pasteur), Simon Gravel (McGill University), Olivier de Fresnoye, Julio Saez-
Rodriguez, Pablo Meyer-Rojas, Gustavo Stolovitzky, and Elise Blaese for chairing
the RECOMB Satellite Workshops on Massively Parallel Sequencing, Computational
Cancer Biology, Genetics, and DREAM Challenges.

I also thank the PC members and external reviewers for their timely reviews of
assigned papers despite their busy schedules; the authors of the papers, highlights, and
posters for their scientific contributions; and all the attendees for their enthusiastic
participation in the conference.

Finally, I also thank our sponsors, including the International Society of Compu-
tational Biology (ISCB), who supported student travel fellowships, as well as the
Centre National de la Recherche Scientifique (CNRS), IBM Research, Ecole
Polytechnique, Réseau Francilien en Sciences Informatiques (RFSI), Région Ile de
France, Frontiers, PRABI, Inria, and GDR BIM, and Sorbonne Université.

February 2018 Ben Raphael
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Long Reads Enable Accurate Estimates
of Complexity of Metagenomes

Anton Bankevich1(B) and Pavel Pevzner2

1 Center for Algorithmic Biotechnology, Institute for Translational Biomedicine,
St. Petersburg State University, Saint Petersburg, Russia

anton.bankevich@gmail.com
2 Department of Computer Science and Engineering,

University of California at San Diego, La Jolla, CA, USA

Abstract. Although reduced microbiome diversity has been linked to
various diseases, estimating the diversity of bacterial communities (the
number and the total length of distinct genomes within a metagenome)
remains an open problem in microbial ecology. We describe the first
analysis of microbial diversity using long reads without any assump-
tion on the frequencies of genomes within a metagenome (parametric
methods) and without requiring a large database that covers the total
diversity (non-parametric methods). The long read technologies provide
new insights into the diversity of metagenomes by interrogating rare
species that remained below the radar of previous approaches based on
short reads. We present a novel approach for estimating the diversity of
metagenomes based on joint analysis of short and long reads and bench-
mark it on various datasets. We estimate that genomes comprising a
human gut metagenome have total length varying from 1.3 to 3.5 billion
nucleotides, with genomes responsible for 50% of total abundance having
total length varying from only 40 to 60 million nucleotides. In contrast,
genomes comprising an aquifer sediment metagenome have more than
two-orders of magnitude larger total length (≈840 billion nucleotides).

Keywords: Microbal diversity · Metagenomics · Rare spieces

1 Introduction

Locey and Lennon [29] recently estimated that Earth is home to as many
as 1 trillion microbial species. In contrast, Schloss [42] demonstrated that,
despite rapidly increasing sequencing efforts, the retrieval of 16S rRNA genes
is approaching saturation. They argued that one-third of the bacterial diver-
sity has already been discovered, implying that Earth is home to only millions
of, rather than a trillion, bacterial species. This discrepancy and the emerged
controversy [1,25,26,35,44,55] illustrate that the challenge of evaluating the
bacterial diversity remains unsolved both at the global scale and at a single
sample (local) level [51]. However, estimating the number of microbial species

c© Springer International Publishing AG, part of Springer Nature 2018
B. J. Raphael (Ed.): RECOMB 2018, LNBI 10812, pp. 1–20, 2018.
https://doi.org/10.1007/978-3-319-89929-9_1
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in a given sample is a more tractable yet difficult problem in microbial ecol-
ogy [19,28,38,43]. Regrettably, many such estimates are inaccurate since most
species in any metagenome belong to the rare biosphere [20,31,48]. Indeed, 16S
rRNA libraries often capture only a small fraction of the sample diversity, result-
ing in large variations of the diversity estimates even for samples from similar
environments. For example, the estimates of the number of microbial species in
soil samples vary from hundreds [22], to tens of thousands [6,8] to a million [10].

Since the terms “diversity” and “complexity” have multiple interpretations
in microbial ecology, we use the terms metagenome richness (the total number
of species in a metagenome) and metagenome capacity (the total genome length
of all species in a metagenome). Metagenome capacity can also be defined as
metagenome richness multiplied by the estimated average length of genomes in
the sample.

Since estimating the richness and capacity of metagenomes is a fundamen-
tal problem in microbial ecology, new approaches for solving this problem are
needed. This challenge is further amplified by recent discoveries that linked the
reduced diversity to various diseases. For example, reduced bacterial diversity
results in an increased frequency of death in the allogeneic stem cell trans-
plantation [50] and represents a biomarker for psoriatic arthritis [41]. On the
other hand, increased bacterial diversity is associated with human papillomavirus
infections [13] and White Plague Disease in corals [49].

The previous studies of bacterial diversity were primarily based on either
parametric or non-parametric approaches [5,12,15,18,22,37]. Various parametric
distributions were chosen to approximate the frequency distribution of captured
species, and to project them to estimate how many more species must be present
in the metagenome. This approach has been challenged since it is unclear which
parametric distributions adequately model a given sample [17,54]. Furthermore,
16S rRNA data represents frequencies of specific PCR products that may differ
in abundance relative to the corresponding bacterial species in a metagenome. In
addition, they suffer from biases arising from various levels of primer matching in
different species, inability to amplify taxa whose 16S rRNA differs from known
ones, the variable number of 16S rRNA operons, and presence of highly diverged
genomes with nearly identical 16S rRNAs [11,21,39].

As Hong et al. [17] discussed, applications of various probability distribu-
tions for evaluating the complexity of the metagenome have often been statis-
tically incorrect. Moreover, even if some metagenomes follow a certain (e.g.,
exponential) distribution of frequencies, others may significantly deviate from
this arbitrarily chosen model. For example, there is no reason to believe that the
frequences of species for a soil metagenome and a human microbiome follow the
same type of parametric probability distribution.

The alternative non-parametric estimators of microbial diversity [22] require
a large database that covers all species in a sample, the condition that is typi-
cally violated. As a result, such estimates greatly underestimate the richness of
metagenomes. As Lladser et al. [28] noted, most microbial communities have not
been sufficiently deeply sampled yet to test the suitability of both parametric
and non-parametric models.
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With proliferation of metagenomics datasets covering entire genomes, it is
important to have an independent way of estimating the richness of metagenomes
that is not limited to sampling of 16S rRNA. Also, all previous studies attempted
to estimate the metagenome richness/capacity using short reads that have lim-
itations with respect to analyzing rare species. Since rare species within a
metagenome typically have low coverage, they are hardly ever assembled into
long contigs, making it difficult to estimate the richness, capacity, and the dis-
tribution of frequencies of various species within a metagenome. For example,
bacterial species with coverage below 15X typically result in low-quality assem-
blies, making it difficult to estimate the number of such species or their total
genome length. Since such rare species account for the lion’s share of genomes
in many metagenomes [20], they remain below the radar of modern sequencing
technologies.

Below we describe the first analysis of microbial diversity using long reads
without any assumption about the distribution of frequencies of genomes within
a metagenome (parametric methods) and without requiring a database that
covers the total diversity (non-parametric methods).

Our approach to estimating the capacity of a metagenome uses joint analysis
of short reads (such as Illumina reads) with long reads (such as TruSeq Synthetic
Long Reads, Pacific Biosciences reads, or Oxford Nanopores reads) and rests on
a new insight based on geometric probability arguments rather than on merely
applying the previously proposed approaches to SLRs. We view each long read
as a “subgenome” and map all short reads to each subgenome to estimate its
abundances. Afterwards, we apply geometric probability arguments to estimate
the capacity of the entire metagenome from the abundances of all its subgenomes.
We emphasize that our new approach requires both long and short reads (i.e.,
it does not work for short reads only or for long reads only) and demonstrate
that it estimates the metagenome capacity and accounts for rare species even
if their coverage by reads is below 0.01X, i.e., the species that are not “seen”
by the state-of-the-art metagenome assemblers aimed at short reads. We apply
our approach to estimate the complexity of the human gut metagenome (in a
healthy individual and in multiple samples from a Crohn’s disease patient at
various stages of the disease) and in an aquifer sediment metagenome.

Although long reads are still rarely used for analyzing metagenomes, they
have a potential to be widely used in future metagenomics projects when
their cost reduces or when the read until technology [30] developed by Oxford
Nanopores becomes widely available. We illustrate our approach using the
TruSeq Synthetic Long Reads (SLR) technology that represents the first long
read technology successfully applied to metagenomic studies [46]. The SLR
technology generates accurate long virtual reads [27,32,52] that provided new
insights into diversity of low abundance species in various metagenomes and
revealed complex sub-partitioning of metagenomes into dozens of strains of the
same species [23,46,53]. In addition, SLRs extend 16S rRNA studies, aimed at
analyzing taxonomic diversity, by insights into functional diversity of rare species
that often provide ecological impact through highly expressed transcriptomes
and proteomes [20].
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Although this paper focuses on SLRs, our method for estimating the capacity
of a metagenome is applicable to long error-prone Single Molecule Sequencing
(SMS) reads as well (see Appendix “Estimating metagenome capacity using long
error prone SMS reads”).

2 Results

Defining the Capacity of a Metagenome. Figure 1 (left) shows the his-
togram of frequencies of genomes comprising the artificial MOCK metagenome
(with richness 20 and capacity 67 Mb) formed by mixing DNA from 20 isolate
genomes [23]. However, the standard measures of richness and capacity depend
on the taxonomic definition of a species and do not account for fragments shared
by different species within a metagenome and for the fact that some species
are represented by multiple similar strains. For example, if a metagenome con-
tains two strains that share 99% of their genomes, should we count them as
two genomes (and sum up their lengths) or as a single genome? Similarly, if a
genome has a plasmid with multiplicity 100, should we count this plasmid 100
times towards the genome length or just one time?

Fig. 1. Real (left) and estimated (right) real frequences of genomes and the abundance
plot (left) and estimated frequency (height) and abundance plot (right) for the MOCK

dataset formed by 20 bacterial species. (Left) frequences (in the logarithmic scale) of
genomes in the MOCK dataset vary from ≈0.02% to ≈28%. The green and red points
on the abundance plot correspond to M50 ≈ 7 Mb and M90 ≈ 17.5 Mb, respectively.
The numbers next to the species names represent abundances (note that ranking based
on frequencies differs from ranking based on abundances). The genome abundance is
approximated as the fraction of short reads originating from this genome. The genome
frequency is computed as the genome abundance normalized by the genome length.
(Right) Blue and black curves show the estimated frequency (height) histogram and the
abundance plot as predicted by our methods in comparison with red curves constructed
using the known set of references. (Color figure online)

To address these issues, we introduce the concept of the de Bruijn capacity of
a metagenome; this is motivated by a popular approach to genome assembly. We
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construct the de Bruijn graph [7] of all genomes in the metagenome (including
plasmids, viruses, unicellular eukaryotes, etc.), transform it into the assembly
graph using SPAdes [2] (collapsing small variations in repeats), and define the
de Bruijn capacity of a metagenome as the total length of edges (contigs) in
the assembly graph. The de Bruijn capacity of the MOCK metagenome (58 Mb)
is smaller than its total length (67 Mb) since this dataset contains a number of
similar genomes and long intragenomic repeats.

Construction of the assembly graph is defined by a parameter bubble length
that controls the percent identity level used for collapsing regions from various
strains into a single contig in the assembly graph. For example, the default bub-
ble length value in the SPAdes assembler [2] roughly corresponds to 98%–99%
percent identity with respect to the taxomic definition of a strain (increasing
the bubble length parameter will decrease the de Bruijn capacity). Thus, In the
default setting, multiple strains that share 98%–99% of the genome (or multicopy
plasmids) do not inflate the de Bruijn capacity. To reflect the stringency of taxo-
nomic units in our estimator, one can vary the maximum number of mismatches
and indels during alignment of short reads to SLRs.

We characterize each genome G in a metagenome M as a pair of numbers
(length(G), num(G)), where length(G) and num(G) refer to the length and
the copy number of this genome in the metagenome. We define frequency and
abundance of a genome G as

frequency(G) =
num(G)

∑
G∈M num(G)

abundance(G) =
length(G) · num(G)

∑
G∈M length(G) · num(G)

We note that the number of reads originating from a given genome within
a metagenome is roughly proportional to its abundance rather than frequency
(under the assumption of the uniform coverage).

The frequency histogram of a metagenome consisting of t genomes is defined
by t bars with heights specified by the frequencies of the genomes and vary-
ing widths specified by the lengths of the genomes (Fig. 1 left). We define the
abundance plot of a metagenome (Fig. 1 left) by considering t most frequent
genomes within a metagenome and specifying a point (lengtht, abundancet),
where lengtht stands for the total length of these genomes and abundancet

stands for the total abundance of these genomes (for each value of t). For each
percentage x from 0% to 100%, we define the value t(x) as the minimum t such
that abundancet exceeds x%. In analogy to the Nx statistics for genome assem-
bly [14], we define the Mx statistics for a metagenome as lengtht(x). For example,
M50 ≈ 7 Mb and M90 ≈ 17.5 Mb for the MOCK dataset described below (Fig. 1,
left).

Computing the abundance plots for complex microbial communities remains
an open problem. Below we show how to construct such plots using the synergy
between short and long reads.

The Total Rectangle Length Problem. We will first state an abstract prob-
abilistic problem and later explain how it relates to the problem of estimating the
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capacity of a metagenome. Consider a set M of rectangles, each rectangle R in
this set characterized by its length length(R) and height height(R). We assume
that the total area of rectangles is 1, i.e.,

∑
R∈M length(R) · height(R) = 1.

For a point ξ from one of the rectangles, we define height(ξ) as the
height of the rectangle that the point ξ falls into. We uniformly and inde-
pendently sample N points from the total area of all rectangles and denote
the rectangle the j-th point falls into as Rj , which is characterized by its
length and height (lengthj , heightj) (Fig. 2). We further assume that the vec-
tor (height1, . . . , heightN ) is known but the vector (length1, . . . , lengthN ) is
unknown.

Let ξ be a random variable corresponding to the uniform sampling of a
point from the total area of all rectangles. The described probabilistic pro-
cess results in N samples of the random variable height(ξ). Given a vector
(height1, . . . , heightN ), our (somewhat ambitious) goal is to estimate the total
length of all rectangles: Length(M) =

∑
R∈M length(R).

Fig. 2. The Total Rectangle Length Problem. N green points are sampled uniformly
and independently from the probabilistic space defined by an (unknown) set of rectan-
gles. Assuming that the heights of rectangles (height1, . . . , heightN ) these points fall
into are known, the goal is to estimate the total length of all rectangles. (Color figure
online)

The Total Rectangle Length Problem is intractable since the set of rectan-
gles may contain a myriad of rectangles with extremely small heights and huge
lengths whose total area is very small, e.g., significantly below 1/N . Since these
rectangles are unlikely to be sampled by any of N sampled points, our estimate
cannot take into account their total length. We thus assume that all rectangles
in the dataset have sufficiently large areas (e.g., larger than 1/N) so that the
probability of sampling each rectangle by at least one point is high.

Estimating the Total Length of Rectangles. Since the points are sampled
uniformly, the probability of a point falling into a rectangle R equals the area
of R: area(R) = Pr(ξ ∈ R). Thus, the length of the rectangle R is length(R) =
area(R)/height(R) = Pr(ξ ∈ R)/height(R) and the total length of all rectangles
can be estimated as:

Length(M) =
∑

R∈M

Pr(ξ ∈ R)
height(R)

=
∑

R∈M

∫

x∈R

dx

height(x)
= E

(
1

height(ξ)

)

, (1)
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where E stands for the expectation of a random variable. Thus, by the law of
large numbers:

Length(M) ≈ 1
N

N∑

j=1

1
heightj

. (2)

Moreover, according to the central limit theorem, the formula above is accu-
rate, i.e., for large N , the variance of the estimate above is approximated as the
variance of the random variable 1

height(ξ) divided by N . We will use this feature
to estimate the metagenome capacity without any assumption on the parametric
distribution of frequencies of genomes within a metagenome. See the Methods
section for computing the abundance plot using a similar approach.

Representing a Metagenome as a Set of Rectangles. As before, we
characterize each genome G in a metagenome M as a pair of numbers
(length(G), num(G)) and define the total length of all genomes over all cells
in a metagenomic sample as

sum =
∑

G∈M

length(G) · num(G)

The height of a genome G is defined as height(G) = num(G)/sum. Note that
genome height is proportional to genome frequency. Thus each genome G is
characterized by a rectangle (length(G), height(G)) and the total area of all
rectangles is 1.

We assume that each genome within a metagenome results in a number of
reads that is roughly proportional to its abundance. We also assume that each
read is characterized by its starting position in one of the genomes and that these
starting positions sample the genome uniformly and independently. Although the
depth of coverage may deviate from the mean coverage in some genomic regions
(e.g., in GC-rich regions or in the regions close to the origin of replication in
the case of actively replicating genomes), such deviations are usually small. For
the sake of simplicity, we assume that all genomes are circular, e.g., a read can
start at any position of the genome so that there are no borderline artifacts (in
the case of linear genomes, there are no reads that start within the last i − 1
positions of the genome, where i is the read length). Thus, starting positions
model the random variable corresponding to the uniform sampling of a point
from the total area of all rectangles.

We assume that Nlong long reads and Nshort short reads were sampled from
the metagenome and that Nshort is much larger than Nlong. For example, vari-
ous samples we analyzed contained ≈30–100 million short paired-end reads and
≈100–800 thousand long SLRs.

Each long defines a random point within the set of rectangles and our goal is
to estimate the height of the rectangle this point falls into. We use short Illumina
reads mapping to a given long read to estimate this height.

For simplicity, we assume that all short reads have the same length referred to
as |shortRead| (this condition holds for most sequencing projects). Since SLRs
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are accurate, we assume that each short read aligned to an SLR longRead also
maps to the corresponding genomic segment and vice versa. To avoid borderline
effects, we assume that we can detect all short reads that align to longRead,
even reads that start at the last position of longRead. To satisfy this condition,
we shorten each SLR by |shortRead| (or by the insert length) but map short
reads using the enture span of each SLR. We define the number of short reads
mapping to an SLR longRead as number(longRead).

The fraction of short reads that map to longRead is expected to be approx-
imately equal to the area in the rectangle space “above” longRead, i.e, to
|longRead| ·height(longRead), where height(longRead) is defined as the height
of the rectangle (genome) that contains longRead. Thus, the expected number
of short reads that map to longRead (that we refer to as E(number(longRead)))
can be estimated as

E(number(longRead)) = |longRead| · height(longRead) · Nshort (3)

Thus,

height(longRead) ≈ number(longRead)
Nshort · |longRead| . (4)

We just reduced the problem of estimating the capacity of a metagenome to
the Total Rectangle Length Problem. We are given a set of Nlong points (SLRs)
that represent a uniform and independent sampling of an unknown set of rectan-
gles (the metagenome). Each SLR is characterized by its length |longReadj | and
the number of short reads numberj mapping to this SLR (for 1 ≤ j ≤ Nlong). We
estimate the height hj of the j-th SLR read using formula 4. Thus, the capacity
of the metagenome is estimated as

Capacity(Metagenome) ≈ 1

Nlong

Nlong∑

j=1

1

heightj
≈ Nshort

Nlong

Nlong∑

j=1

|longReadj |
numberj

. (5)

In the Methods section we describe similar formulas for constructing the
frequency histogram and the abundance plots. Formula 5 has limitations in ana-
lyzing extremely rare species, e.g., species that did not result in any SLRs or
species that resulted in SLRs with extremely small coverage by short reads. Note
that this formula was derived in two steps: estimation of the expectation of the
inverse height (formula 2) and estimation of the SLR height through its coverage
by short reads (formula 4). We discuss how to address the limitations of these
steps in the Methods section.

Datasets. We analyzed the following metagenomics datasets based on
SPAdes [2] and truSPAdes [3] assemblies of SLRs (see Appendix “TruSPAdes
assemblies of MOCK, GUT, and SEDI datasets”):

The SYNTH synthetic community dataset is formed by a set of short Illumina
reads from the genomic DNA mixture of 64 diverse bacterial and archaeal species
(Shakya et al. [45]; SRA acc. no. SRX200676) that was used for benchmarking
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the Omega assembler [16]. It contains ≈109 million Illumina HiSeq 100 bp paired-
end reads with mean insert size of 206 bp. Since the reference genomes for all
64 species forming the SYNTH dataset are known, we used them to evaluate the
accuracy of our estimator. The total length of the reference genomes for this
dataset is ≈200 Mb and its de Bruijn complexity is ≈190 Mb.

The SYNTH dataset contains short Illumina reads but does not contain SLRs.
We thus simulated 6306 virtual SLRs (providing the average coverage of 0.25
for the metagenome) for the SYNTH dataset by randomly selecting a short read,
mapping it to one of the reference genomes, and extending the region covered
by this read by N nucleotides in both directions (N was uniformly distributed
between 1500 to 5500). This simulation protocol ensures that simulated SLRs are
sampled from metagenome with the same probability distribution as the short
reads.

The MOCK synthetic community dataset is formed by short Illumina reads and
SLRs from the genomic DNA mixture of 20 bacterial species [23]. It contains
≈31 million Illumina paired-end short reads with mean insert size of 247 bp and
≈221 thousand SLR reads longer than 6 kb constructed from three sets of 384
barcoded read pools each. Since the reference genomes for all species forming the
MOCK dataset are known, we used them to assess the accuracy of our estimator.
The total length of the reference genomes for this dataset is ≈67 Mb and its de
Bruijn complexity is ≈58 Mb.

The GUT dataset is formed from short Illumina reads and SLRs sampled from
the gut microbiome of a healthy human male that was analyzed in Kuleshov
et al. [23]. It contains ≈80 million paired-end short reads with mean insert size
of 208 bp and seven sets of barcoded read pools (384 pools in each set) that
resulted in ≈501 thousand SLR contigs longer than 6 kb. Using this dataset we
provide a new estimate of the capacity of the human gut metagenome.

The SEDI dataset is formed from short Illumina reads and SLRs sampled
from an aquifer sediment that was analyzed in Sharon et al. [46]. It contains
≈27 million paired-end short reads with mean insert size of 351 bp and three
sets of barcoded read pools (384 pools in each set) that resulted in ≈215 thousand
SLRs longer than 6 kb. Sharon et al. [46] revealed a high diversity of strains in
the genomes of this dataset. We confirm findings of Sharon et al. [46] and turn
their initial observation into an estimate of the SEDI metagenome capacity.

In difference from the SYNTH and MOCK datasets, the metagenome capacity
of GUT and SEDI datasets remains unknown. In addition to these datasets, we
analyzed a larger synthetic dataset and four human microbiome datasets from
a patient suffering from the Crohn’s disease (see Appendix).

Benchmarking. For each dataset, we estimated the capacity of the correspond-
ing metagenome (using formula 2) and constructed the frequency histogram and
the abundance plot (Fig. 1 (right) for MOCK dataset and Fig. 3 for the other
three datasets) using formula 7. We analyzed 1000 SLRs with the highest cov-
erage in each dataset (contributing to a small “bump” in the beginning of the
frequency histograms) and confirmed that most of them arise from plasmids and
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16S rRNAs. This finding suggests that highly-covered SLRs can be used for de
novo assembly of new plasmids and characterization of previously unknown 16S
rRNAs directly from metagenomics datasets. Recent attempts to address these
problems using short reads with tools like RECYCLER [40] and PhylOTU [47]
faced computational challenges since it remains unclear how to extract plasmids
and 16 rRNAs from the complex de Bruijn graphs of metagenomes. In order
to evaluate how our estimator deteriorates with reduction in coverage by short
reads and/or long reads, we downsampled the entire datasets of short reads and
SLRs (Table 1).

Fig. 3. Estimated frequency histograms (blue curve) and abundance plots (black curve)
for SYNTH, GUT, and SEDI datasets. The distribution of heights (frequencies) of individ-
ual genomes within a metagenome was obtained based on alignments of short reads to
SLRs. For the SYNTH dataset, we compared the constructed frequency histogram and
abundance plot with the red plot representing the reference genomes with known abun-
dancies. The y-axis of frequency histograms show the histogram of heights SLRs (in the
decreasing order of heights) multiplied by 106, i.e., the probability that a random read
falls into a 1 Mb long segment of the metagenome specified by the x coordinate. For
the GUT dataset, M50 = 40Mb and M90 = 230Mb. For the SEDI dataset, M50 = 39 Gb
and M90 = 432 Gb. (Color figure online)

SYNTH. As Table 1 illustrates, our estimator is accurate even with a small number
of SLRs and short reads; e.g., even for short reads downsampled at 5%, deviation
from the total metagenome size does not exceed 15%.

Note that the coverage of some genomes in the SYNTH dataset is as low as
6X [16]. Our capacity estimate remains accurate even at 0.1% downsampling,
corresponding to the coverage by short reads for some genomes as low as 0.006.
Note that the estimated capacity is accurate when almost all SLRs are covered
by at least one short read.

MOCK. Table 1 illustrates that our formula accurately estimates the metagenome
capacity when at least 7% of short reads are used. Note that while the MOCK
dataset is subject to various biases that affect sampling of SLR and short reads
(e.g., the GC bias), our formula is still accurate. Table 1 also shows that our
formula generates stable capacity estimates even with a highly variable number
of downsampled SLRs and suggests that there is a number of rare species in this
metagenome.
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Table 1. The metagenome complexity estimation (in Mb) for SYNTH and MOCK datasets.
Columns correspond to downsampling of SLR reads, while rows correspond to down-
sampling of short reads. The last column shows the percentage of SLRs that were not
covered by any reads from the downsampled set of short reads. Estimated metagenome
capacity (in Mb) for SYNTH and MOCK datasets is 200Mb and 67 Mb, respectively. Esti-
mated de Bruijn capacity (in Mb) for for SYNTH and MOCK datasets is 190 Mb and 58Mb,
respectively.

SYNTH

Estimated metagenome capacity using Fraction of uncovered SLRs

100 SLRs 500 SLRs 2000 SLRs 10000 SLRs

0.02% 156 144 147 150 51%

0.1% 204 220 209 218 28%

1% 194 241 224 230 0.4%

5% 182 221 203 205 0%

25% 179 212 198 201 0%

100% 179 209 196 199 0%

MOCK

Estimated metagenome capacity using Fraction of uncovered SLRs

100 SLRs 1000 SLRs 10000 SLRs 220748 SLRs

1% 34 31 37 37 3%

7% 53 56 59 58 0.7%

20% 76 73 73 71 0.08%

100% 69 60 68 72 0.005%

GUT. We estimated the capacity of the human gut metagenome at ≈1.3 billion
nucleotides, in line with previous estimates of the human gut microbiome rich-
ness [36]. Also, a rather small fraction of SLRs were not covered by reads (0.8%),
suggesting that our estimate is accurate. Note that assembly of this dataset per-
formed in Kuleshov et al. [23] resulted in contigs with total length of 656 Mb.
Thus, the assembled contigs in the GUT dataset represent a large fraction of this
metagenome.

SEDI. Our formula resulted in ≈840 Gb estimate for the capacity of this
metagenome but ≈47% of SLRs were not covered by any short reads, suggesting
that this metagenome is very diverse and that it contains a very large num-
ber of extremely rare species (with coverage 0.01X and below) which account
for most of the total DNA in this metagenome. Thus, our formula is likely to
underestimate the complexity of this metagenome. Note that the total length
of assembled contigs for the SEDI dataset (204 Mb for contigs longer than 1 kb)
is significantly lower that the estimated capacity of the metagenome. Since the
large SEDI metagenome may include unicellular eukaryotes with large genomes
(that are common in sediments [4]) and is likely to include a large fraction of
relic DNA [26], it is difficult to estimate its richness.
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3 Methods

Estimating the Abundance Plot. Let D be a value range of a random
variable ξ with density p with respect to a measure μ. By considering p(ξ) as a
random variable, we have:

E

(
1

p(ξ)

)

=
∫

D

1
p(x)

p(x) =
∫

D

1 = |D|. (6)

Thus, formula 1 is a special case of a more general formula for the value range
size estimation. This interpretation also allows us to estimate the value of |Dt|,
where Dt = {x ∈ D|p(x) < t}:

|Dt| =
∫

Dt

1 =
∫

Dt

1
p(x)

p(x) =
∫

D

1
p(x)

δp(x)<tp(x) = E

(
1

p(ξ)
· δp(ξ)<t

)

. (7)

The right part of this formula can be estimated similarly to formula 2, resulting
in the estimate of the frequency histogram. The graph of |Dt| as a function of t
gives the abundance plot of a metagenome. In practice estimation of frequency
histogram can be constructed using the following method. Given the heights of
SLRs in the decreasing order (h1, . . . , hNlong

) computed using formula 4, the
frequency histogram consists of Nlong bars with the j-th bar in the histogram
having height hj and width 1

hj
. The abundance plot is merely the integral of the

frequency histogram.

Variance of the Metagenome Capacity Estimator. We used the central
limit theorem (CLT) as the basis of our estimator. The accuracy of the resulting
formula in the CLT is defined by the variance of the random variable in question.
For example, in the case when a significant fraction of a metagenome results
in rectangles with extremely low height (e.g., rectangles with area less than
1/Nlong), the variance of the random variable is very high. We thus make an
assumption that nearly entire metagenome is comprised from the genomes with
sufficiently large frequencies to be captured by SLRs. Since typical SLR projects
result in 105−106 SLRs, this constraint implies that the metagenome that we
are able to analyze mostly consists of species with frequencies exceeding 0.001%.
Under this assumption, we can use the CLT to compute the variance of our
estimator.

Accuracy of the Inverse Height Estimator. Formula 3 leads to an unbiased
estimate of the SLR height height(longRead) (given by formula 4). However, the
value that we actually need to estimate is 1

height(longRead) and this estimation,
given by formula 5, becomes biased. Below we analyze how this bias affects our
estimation of the metagenome capacity.

We first consider a simple case when the metagenome consists of a single
genome Genome and when SLRs sampled from Genome have the same length.
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We also assume that the number of reads mapped to a genome fragment (and
an SLR) follows the Poisson distribution:

number(longRead) ∼ Poisson(λ), (8)

where λ represents the expectation of the number of reads mapped to longRead.
The value λ can be estimated as: λ = |longRead| ·height(longRead) ·Nshort. We
can now compute the value |Genome|∗, the genome length that is (erroneously)
estimated by formula 5 instead of |Genome|:

|Genome|∗ = Nshort · E

( |longRead|
Poisson(λ)

|Poisson(λ) �= 0
)

(9)

Note that since height(Genome) · |Genome| = 1, the function δ, defined as
|Genome|∗
|Genome| , depends only on the value of λ:

δ(λ) =
|Genome|∗
|Genome| = λ · E

(
1

Poisson(λ)
|Poisson(λ) �= 0

)

=
λ

1 − e−λ

∞∑

n=1

[(1/n) · e−λ · λn/n!] =
λ · e−λ

1 − e−λ
(−γ − ln(λ) − Ei(−λ))

where γ ≈ 0.57721566 is the Euler-Mascheroni constant and Ei is the exponential
integral Ei(z) = − ∫ ∞

−z
e−tt−1dt. Thus, the expectation of the relative error in

formula 5 is defined by δ(λ). The higher is the value of λ (which refers to the
average number of short reads mapped to a long read), the closer δ is to 1. For
example, if the expected number of short reads aligned to an SLR exceeds 15, the
relative error of our estimate is at most 10%. Coverage of a typical 10 kb long SLR
by 15 reads corresponds to genome coverage of 15 · |shortRead|/|longRead| =
0.15X for short reads of length 100.

This analysis illustrates why long reads provide a much “deeper” look into
the capacity of a metagenome than short reads. Indeed, it enables analysis of
genomes with the coverage 0.15X and below as compared to the coverage 15X
that is typically needed for assembling a genome within a metagenome from
short reads. For genomes with a value of λ significantly less than 1, it turns
out that most SLRs sampled from them have zero coverage by short reads.
Thus, genomes with very low coverage contribute little to the estimate of the
metagenome capacity.

4 Discussion

The recent bacterial census update [42] highlighted that high-throughput
sequencing is based on short reads, while a high-quality census requires a high-
throughput full-length 16S rRNA sequencing (rather than conventional short
reads sequencing). It also illustrated the need for alternative technologies to
analyze bacterial diversity such as single cell sequencing [21]. However, without
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prior sorting, single cell sequencing mostly reports the abundant species. In con-
trast, a large fraction of individual genomes assembled from metagenomes had
not been sequenced before [34]. However, the number of genomes reliably recov-
ered from a metagenome is usually limited to hundreds at best, a small fraction
of the total diversity of a metagenome. These difficulties highlight the need for a
yet another technology for evaluating bacterial diversity. We showed that a com-
bination of short-read and long-read sequencing technologies solves this problem
even though each of these technologies separatily does not provide accurate esti-
mates of the metagenome capacity. Although our analysis may be hampered
by a potential metagenome sampling bias between short and long reads, our
estimator of a metagenome complexity results in a useful approximation of the
metagenome size.

Analysis of various metagenomics samples revealed that, although there often
exists a small number of abundant species, thousands of low-abundance highly-
diverged species account for most of the observed diversity. While this rare bio-
sphere represents a source of genomic innovation [20], previous metagenomics
studies, plagued by limitations of short reads technologies, were unable to eval-
uate its diversity. This study is the first attempt to estimate the diversity of the
rare biosphere using a combination of short and long reads. Our analysis of the
SEDI dataset illustrates, this rare biosphere may contain hundreds of thousands
species even for a single soil sample. As the existing estimates of richness of
soil and sediment bacterial communities differ by orders of magnitides, it would
be interesting to apply our approach to analyzing other soil/sediment hybrid
datasets when they become available.

Our approach also revealed significant variations in the diversity of the human
gut metagenome in the case of an individual with the Crohn’s disease. We envi-
sion that the metagenomics studies will soon move to generating a nearly com-
plete census of all bacteria within microbiomes across the entire human popula-
tion [33]. Our method will provide an estimate of the still unknown fraction of
metagenomes that will be important for building such a census.

Acknowledgements. We are indebted to Chris Dupont, Rob Knight, and Glenn
Tesler for providing numerous comments. Glenn Tesler also suggested using exponential
integrals for analyzing the bias of our estimator. We are grateful to Yana Safonova,
Andrey Bzikadse, Sergey Bankevich, Sergey Nurk, Alon Orlitsky, Ivan Tolstoganov,
and Aleksandr Shlemov for many helpful discussions and help with preparation of this
paper. This study was funded by the Russian Science Foundation (award 14-50-00069)
and by the National Science Foundation (MCB-BSF award 1715911).

Appendix

TruSPAdes Assemblies of MOCK, GUT, and SEDI Datasets. The
TruSeq SLR technology generates accurate and long virtual reads derived from
pools of short reads [27,32,52]. It is based on fragmenting genomic DNA into
large segments (≈10 kb long) and forming random pools of the resulting seg-
ments (each pool contains ≈300 segments). Next, these fragments are amplified,
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sheared, and marked with a barcode that is unique to the pool. Afterwards, they
are sequenced using the standard Illumina short reads technology. All short reads
originating from the same barcode are assembled together resulting in a set of
long contigs (this step is called the SLR barcode assembly). Ideally, the result
of such sequencing effort for a single barcode is the collection of approximately
300 fragments (each fragment is ≈10 kb long) from a genome forming 300 long
virtual reads. SLRs have low mismatch rate (about 0.1%), extremely low indel
rate, and few misassemblies [3].

Table 2 presents results of barcode assembly of MOCK, GUT and SEDI datasets
with truSPAdes.

Table 2. Results of truSPAdes assemblies of MOCK, GUT and SEDI datasets. Long SLRs
are defined as SLRs longer than 6 kb.

MOCK GUT SEDI

#SLRs 451036 1226918 210495

#long SLRs 220778 772833 157336

N50 9180 8625 8266

Avg. #long SLRs per barcode 191 287 136

Total length of SLRs (Gb) 2.9 8.4 1.5

Total length of long SLRs (Gb) 2.1 5.8 1.3

Analyzing the CAMI and CROHN Datasets. In addition to datasets
described in the main text, we also analyzed a larger synthetic dataset and four
human microbiome datasets from a patient suffering from the Crohn’s disease.

The CAMI dataset is a simulated dataset generated by the “Critical Assess-
ment of Metagenome Interpretation” (CAMI) initiative aimed at evaluating var-
ious approaches to analyzing metagenomes (http://www.cami-challenge.org/).
We used a CAMI dataset simulated from 225 genomes and containing 150 million
100bp paired-end reads with mean insert size of 180bp (the errors in simulated
reads are modelled after Illumina HiSeq). We simulated 50 thousand SLRs in the
same way as for the SYNTH dataset. The total length of the reference genomes
for this dataset is ≈820 Mb and its de Bruijn complexity is ≈770 Mb. Figure 4
shows that our estimator works well for the CAMI dataset.

The CROHN datasets are four human gut microbiome datasets from a patient
with Crohn’s disease. These datasets (CROHN1, CROHN2, CROHN3, CROHN4) rep-
resent a metagenomics time series collected at 12-28-2011, 04-29-2013, 11-16-
2014 and 06-29-2015, respectively. Each of these datasets includes one Illumina
paired-end library and one SLR library. Number of short reads in these datasets
ranges from 150 to 230 millions with mean insert size ≈400 bp for all datasets.
The number of SLRs ranges from 17 to 50 thousand. Assembly efforts for these
datasets resulted in contigs of length 242, 172, 225 and 275 Mb for CROHN1,
CROHN2, CROHN3, and CROHN4 datasets respectively.

http://www.cami-challenge.org/
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We estimated metagenome capacity for CROHN1, CROHN2, CROHN3, and CROHN4
datasets as 3.5, 2.0, 2.4, and 3.2 Gb, respectively. Values of M50 were estimated
as 41, 61, 25, and 45 Mb, respectively, while values of M90 were estimated as
230, 490, 240, 250 Mb respectively. These estimates reveal large variations in
metagenome capacity during the course of disease that go well beyond what
can be estimated using short read assemblies. Correlation between metagenome
capacity and antibiotics treatments for this metagenomics time series will be
discussed elsewhere.

Fig. 4. Estimated frequency histograms and abundance plots for CAMI (left) and
CROHN1, CROHN2, CROHN3, CROHN4 datasets (right). The distribution of heights (frequen-
cies) of individual genomes within a metagenome was obtained based on alignments
of short reads to SLRs. For the CAMI dataset, we compared the constructed plots with
the blue plot representing the reference genomes with known abundancies.

Estimating Metagenome Capacity Using Long Error Prone SMS
Reads. Although SMS reads (e.g., reads generated using Pacific Bio-
sciences and Oxford Nanopores technologies) are still rarely used for analyzing
metagenomes [9], they have a potential to be widely used in future metage-
nomics projects when their cost reduces and when the read until technology [30]
developed by Oxford Nanopores becomes widely available. Below we show how
to extend our approach for estimating the metagenome complexity using SMS
reads.

SMS reads present an attractive alternative to TSLRs since their average
length is higher and since they feature a uniform coverage depth that is not
affected by the GC content. However, alignment of short Illumina reads against
error-prone SMS reads is a more challenging task than their alignment against
accurate TSLRs. We addressed this complication using the bowtie2 alignment
tool [24] with specially selected parameters aimed at alignment of short Illumina
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reads against error-prone SMS reads (-D 40 -R 3 -N 0 -L 17 -i S,1,0.50 –rdg 1,3
–rfg 1,3 –score-min L,-0.6,-1 -a). However, even using these custom parameters,
bowtie2 fails to detect alignments of ≈20% of Illumina reads, resulting in an
underestimation of the heights of long reads. To compensate for this effect, we
applied an adjustment factor 100

100−20 = 1.25 to artificially inflate the heights in
our formula for estimating the metagenome capacity.

Currently, there is a shortage of publicly available hybrid metagenomics
datasets (containing both Illumina and SMS reads). Ideally, Illumina and SMS
reads for such datasets should be generated at the same time so that the abun-
dances of individual genomes within a metagenome are the same for Illumina
and SMS reads, implying that the depth of coverage by Illumina reads is pro-
portional to the depth of coverage by SMS reads. In practice, since the SMS
reads for these datasets were often generated as an afterthought, Illumina and
SMS reads for the publicly available hybrid metagenomics datasets are gener-
ated at different time points and prepared for sequencing using different sample
preparation protocols. Thus, since metagenome composition is changing and is
subject to blooms [33], the existing hybrid datasets do not necessarily feature
the proportional depths of coverage by Illumina and SMS reads. Our analysis
revealed that the fractions of Illumina and SMS reads aligned to each of the
reference genomes for publicly available hybrid synthetic metagenomic dataset
may differ by two orders of magnitude. This difference in the genome coverages
by short and long reads in the publicly available hybrid metagenomics datasets
makes our approach inapplicable to the currently available hybrid metagenomics
datasets.
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Abstract. Measuring nucleosome positioning in cells is crucial for the
analysis of epigenetic gene regulation. Reconstruction of nucleosome pro-
files of individual cells or subpopulations of cells remains challenging
because most genome-wide assays measure nucleosome positioning and
DNA accessibility for thousands of cells using bulk sequencing. Here we
use characteristics of the NOMe-sequencing assay to derive a new app-
roach, called ChromaClique, for deconvolution of different nucleosome
profiles (chromatypes) from cell subpopulations of one NOMe-seq mea-
surement. ChromaClique uses a maximal clique enumeration algorithm
on a newly defined NOMe read graph that is able to group reads accord-
ing to their nucleosome profiles. We show that the edge probabilities of
that graph can be efficiently computed using Hidden Markov Models.
We demonstrate using simulated data that ChromaClique is more accu-
rate than a related method and scales favorably, allowing genome-wide
analyses of chromatypes in cell subpopulations. Software is available at
https://github.com/shounak1990/ChromaClique under MIT license.

Keywords: NOMe-seq · Max clique enumeration · Epigenetics
HMMs

1 Introduction

The eukaryotic genome is organized in nucleosomes which consist of approxi-
mately 147 base pairs of DNA wrapped around a histone octamer. Nucleosomes
serve as the basic unit of chromatin packaging and are connected via free DNA
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linkers of variable length. Nucleosome positioning plays a pivotal role for tran-
scriptional regulation by controlling DNA accessibility for binding proteins (e.g.
transcription factors). Thus, learning more about nucleosome positioning and
how it differs between different cell types, as well as subpopulations of cells, is
an important task to understand gene expression regulation.

Different protocols for the genome-wide characterization of nucleosome posi-
tioning have been developed. The most common are DNaseI-seq [1], ATAC-seq [2]
and NOMe-seq [3]. NOMe-seq (nucleosome occupancy and methylation) utilizes
the enzyme M.CviPI which specifically methylates cytosine dyads in a GpC
sequence context. Because NOMe-seq uses bisulfite sequencing, it also delivers
the endogenous CpG methylation levels, enabling the simultaneous analysis of
chromatin accessibility and DNA methylation. Due to this unique feature, a
number of recent studies have applied NOMe-seq to study epigenetic regula-
tion [3–7]. It is also the first assay that can measure nucleosome positioning and
DNA methylation simultaneously in single cells [8].

However, single cell datasets using NOMe-seq or other related assays are rare,
whereas bulk sequencing experiments do not reveal nucleosome and chromatin
profiles of subpopulations of cells. Although NOMe-seq is normally obtained
from bulk sequencing of cells, the nucleosome readout of one paired-end read
comes from a single cell. As several GpC dinucleotides may appear on a paired-
end read obtained from NOMe-seq, this information can be used to group reads
that originate from the same nucleosome profile. We call these distinct nucleo-
some profiles chromatypes, to emphasize that their chromatin arrangement differs
between cells. Here, we are concerned with the development of novel computa-
tional methods that can reconstruct chromatypes from NOMe-seq data.

The only comparable method is epiG, which clusters reads according to epi-
genetic haplotypes using a Bayesian approach that considers DNA methylation
and GpC methylation in NOMe-seq data [9]. However, the Bayesian approach
in epiG is slow and can thus only be used to study local genomic regions and
does not allow genome-wide application.

We exploit recent advances for methods that reconstruct viral haplotypes
from DNA-seq data. The high mutation rates of viruses such as HIV give rise to
considerable intra-patient variability of virus genomes [10]. Reconstructing the
full set of virus haplotypes ciruclating in a patient’s blood and quantifying their
relative abundances are important tasks with the prospect of informing therapy
stratification [11]. This computational task is challenging, however, because usu-
ally no a priori knowledge on the number of haplotypes and the distribution of
their abundances is available. Therefore, distinguishing sequencing errors from
low-abundance haplotypes requires non-trivial techniques. In the meantime, a
wealth of methods has been developed [12], including Haploclique that enumer-
ates maximal cliques on a DNA-seq read graph [13].

We introduce a novel method, called ChromaClique, which combines the
maximal-clique enumeration procedure of HaploClique with a novel probabilistic
edge criterion tailored to NOMe-seq data. The edge criterion incorporates base
quality scores in a probabilistic manner. ChromaClique uses Hidden Markov
Models for the efficient computation of the edge probabilities in the novel read
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graph. We show that ChromaClique is the first algorithm that can be used
genome-wide and that it has better accuracy on simulated data compared to the
only comparable method epiG.

2 Methods

2.1 ChromaClique Overview

ChromaClique starts from bulk NOMe-seq reads aligned to a reference genome
in BAM format. Each cell, or group of cells, is expected to have different nucle-
osome positioning patterns (chromatypes) which are encoded in the reads. This
is depicted in Fig. 1 with the different colors, where each color represents a chro-
matype. The aligned reads are converted into a read graph, G := (V,E), with
nodes V and edges E. Each node represents a read. Two reads share an edge
only if they are likely to originate from the same chromatype. Both single and
paired-end reads are considered for the edge criterion. Two paired-end reads
share an edge only when both reads from both pairs agree to the edge criterion.
The maximal cliques in the graph are enumerated using the algorithm previously
employed in HaploClique [13]. The reads in a maximal clique are merged. The
condensed graph is checked again for cliques which have an edge between each
other and the maximal clique finding algorithm is run iteratively. This contin-
ues until no more edges are found in the graph. The nodes in the final graph
represent the individual reconstructed chromatypes and are also called super
reads.

2.2 Encoding the Reads

In NOMe-seq data only GCH trinucleotides, i.e. GCT, GCA or GCC, in
the genome provide information about open and closed nucleosome positions,

Fig. 1. Illustration of a cell population with different nucleosome states, indicated
by different colors. The NOMe signature of different chromatin states is shown on
the bottom left. The ChromaClique workflow is shown on the right: ChromaClique
applies its edge criterion to NOMe bulk sequencing data (black lines connecting reads),
enumerates all maximal cliques (indicated in red), merges reads in a clique, and iterates
the process until convergence. (Color figure online)
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Fig. 2. GCH and GTH positions in a read are compared with the reference. If there
is a position with GCH in the read and a GCH in the reference, it is marked as “O”
and otherwise if it is a GTH in the read it is marked as “C”. All other positions other
than the GCH or GTH positions are summarized by numbers reflecting their length.
If there is a GTH in the read and a GTH in the reference it is not treated as a GCH
position.

because GCG positions are ambiguous due to the possibility that CpG DNA
methylation took place. Each individual read is represented as follows: each
GCH position is encoded as open (O) and each GTH position is encoded as
closed (C). This is because a GCH is not converted by bisulfite treatment, when
it is accessible and was methylated by the enzyme. The NOMe enzyme M.cviPI
works on accessible GCs on both DNA strands in 5’ to 3’ direction. This reverse
complementarity is taken into account during read encoding and edge construc-
tion by the algorithm. Figure 2 shows the process of encoding a read based on
its GCH and GTH occurrences. The last GTH position is not a closed position
since the reference does not have a GCH position there.

Sequencing errors in the reads that would prevent the detection of GCH can
be corrected by comparing the positions in the reference sequence to which the
read is aligned. For example if there is a GCH position in the reference and due
to an error the read contains HCH instead this will be corrected for later use in
the algorithm.

2.3 Definition of Edge Probabilities

In order to build the graph for finding maximum cliques, each pair of reads with
sufficient overlap is scored against each other to see if they are likely to originate
from cells with the same chromatype. The reads are scored on the basis of their
base quality scores (Phred scores) as reported by the sequencer, and also based
on the similarity of nucleotides observed at their shared GCH positions.

ChromaClique does not make an assumption on the number and relative
abundances of open-chromatin patterns. In order to evaluate the likelihood of
an edge between two considered reads, we compute the edge probability as the
probability that the overlapping portion of both reads has been generated by
any one of the possible chromatypes. Before we can properly define the edge
probability we make a number of definitions.

ChromaClique first encodes reads at only GCH positions (in the following
called C/O positions) and records the distance between consecutive occurrences
(see Fig. 2). In the read each GC is denoted as open (O) and each GT as closed
(C). For simplicity, we denote Ci(R) as the open-chromatin status (O or C)
at the ith C/O position in read R, e.g., C2(R) = O in Fig. 2. The phred base
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quality of the Cytosine or Thymine at the ith C/O position in read R is denoted
phred(i, R). Let Qi(R) be the scaled base quality score at position i, that is
Qi(R) = 10− phred(i,R)

10 . The distance between the ith and jth C/O position in the
read is given by di,j(R), e.g., d1,2(R) = 4 in Fig. 2.

Computing the edge probability involves two steps. The first estimates the
probability for a given chromatype y given the base qualities obtained from the
sequencer, denoted P (R|y). Let T be the total number of C/O positions in an
encoded read, then:

P (R|y) =
T∏

i=1

fqual(R, y, i), (1)

where fqual is defined as:

fqual(R, y, i) =
{

1 − Qi(R), if Ci(R) = Ci(y)
Qi(R), if Ci(R) �= Ci(y) . (2)

The second step consists in computing the probability of an individual chro-
matype y, denoted as P (y). A nucleosome occupies around 147 bps and therefore
not all possible chromatypes are equally likely. For example 1 C 2C 2C 2C is
more likely than 1 C 2O 2C 2O. We capture this by defining transition events at
adjacent C/O positions.

For a read R a transition for position i is defined as Ci(R) �= Ci+1(R), namely
the open-chromatin state at position i has changed compared to its adjacent
position i+1. Here we do not distinguish the direction of the transition, i.e. a
transition from an O to a C is equivalent to a transition of a C to an O. Similarly,
position i is called a non-transition if Ci(R) = Ci+1(R). As mentioned above,
the distance d between two positions i and j should influence the likelihood of a
transition event. Therefore we obtain the empirical transition probability tr(d),
as the relative frequency of transition events for a certain distance d:

tr(d) =
Transition(d)

Transition(d) + NonTransition(d)
, (3)

where Transition(d) and NonTransition(d) are the number of transition and
non-transition events at distance d observed in all reads, respectively. Then the
non-transition probability is simply given by:

1 − tr(d). (4)

Transition or non-transition probabilities are used in the computation of
observing a certain C/O pattern in a read. In addition, these probabilities may
help to recognize errors in the reads, for instance errors due to the incorrect
methylation of the M.CviPI enzyme, or due to incorrect bisulfite conversion. For
example if the transition probability for a specific distance, say 10, is 0.05, it
means that the number of non-transitions seen for this distance is much higher
than the number of transitions. However, if a transition was observed at this
distance, the probability that it is an error due to either a failed NOMe or
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bisulfite conversion, would be high. This information is later used as a prior
when two reads are compared to see if they originate from cells with similar
chromatypes.

Finally, we can use the transition probabilities (Eq. 3) to quantify the prob-
ability of observing a particular chromatype y. We define:

P (y) =
T−1∏

i=1

ftransition(y, i), (5)

ftransition(y, i) =

⎧
⎨

⎩

1 − tr(di−1,i(y)), if Ci(y) = Ci−1(y) and i > 1
tr(di−1,i(y)) if Ci(y) �= Ci−1(y) and i > 1
0.5 i = 1

. (6)

Intuitively, P (y) will be low if the chromatin state configuration in y is
unlikely given the transition probabilities. If two reads R1 and R2 are inde-
pendent of each other, the probability that they originate from a particular
chromatype y can now be calculated as follows:

P (R1, R2|y) = P (R1|y) P (R2|y). (7)

From the law of total probability, the probability that two reads originate from
the same chromatype can be computed as:

P (R1, R2) =
∑

y∈Y

P (R1, R2|y) P (y), (8)

where Y is the set of all possible 2T chromatypes. Equation (8) is the central edge
probability of ChromaClique that is used for building its read graph. Two reads
are said to be from the same chromatype if the probability P (R1, R2) is above
a threshold δ. We call δ the edge threshold and only edges with P (R1, R2) > δ
are considered in the read graph. δ needs to be set manually by the user, but we
will determine a practical value for δ using simulations.

Minimum Overlap. The edge probability depends on another parameter which
also needs to be set manually. It is the number of C/O positions, D, in the
overlapping portion of the two reads in question. If D is too small then this
may lead to false edges between reads originating from different chromatypes.
However if the number is too large then it leads to many read overlaps not being
considered. By default we set the minimum number of overlapping C/O positions
to 2.

Thus this parameter determines the purity of the cliques and also the length
of the final super reads. It was set manually after analysing the behaviour of
simulated data.

2.4 Efficient Calculation of Edge Probabilities in ChromaClique

The probability that two reads originate from the same chromatype is given
by Eq. (8). In order to obtain the above probability R1 and R2 have to be
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checked against all the possible chromatypes, i.e the entire set Y . The size of
Y is 2T , where T is the number of C/O positions in the overlapping portion
of the reads. Thus, it becomes computationally expensive to enumerate all the
different chromatypes and then calculate the probability.

However, if the overlapping portion of the reads is modeled as a Hidden
Markov Model (HMM), the forward algorithm can be used to efficiently calculate
the entire probability without having to enumerate all the possible chromatypes.

Fig. 3. Hidden Markov Model for calculating the probability that two reads originate
from the same chromatype. The circles (1C , 1O, 2C ...) represent the hidden states
which are the actual open or closed state of the chromatin in the DNA sequence
(based on GCH or GTH positions). Each of these states emits two values (one for each
of the sequences being compared). The emission probabilities for these are given by the
tables near these states. The transition probabilities from one hidden state to another
is given by the arrows between the hidden states. The start state S and end state E
are customary states denoting the start and end of the process.

Hidden Markov Model (HMM) for Chromatyping. Figure 3 illustrates
the HMM for calculating the probability that two reads originate from the same
chromatype. It consists of a set of hidden states, which represent the actual
nucleotide state (open or closed). Each hidden state emits a pair of nucleotides,
one nucleotide for each read at a C/O position. The emission parameters consider
the phred base qualities.

More formally, let T be the total number of C/O positions in the overlapping
region of the two reads (R1 and R2) being compared. Let t ∈ {1, . . . , T} be
the index for the C/O positions, where R1(t) ∈ {C,O} and R2(t) ∈ {C,O}
denote the chromatin status given by R1 and R2 at position t, respectively. Let
{S, 1C , 1O, 2C , 2O, ...., TC , TO, E} represent the set of hidden states, where S and
E denote the silent start and end state, respectively. In the following we will
refer to a state from the set as tb with t ∈ {1, . . . , T} and b ∈ {C,O}.
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State tb has emission probability etb(b1, b2) for a pair (b1, b2), with bi ∈
{C,O}, defined as:

etb(b1, b2) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − q1(t)) · (1 − q2(t)) b = b1 and b = b2,
q1(t) · (1 − q2(t)) b �= b1 and b = b2,
(1 − q1(t)) · q2(t) b = b1 and b �= b2,
q1(t) · q2(t) b �= b1 and b �= b2,

(9)

where q1(t) is defined as:

q1(t) = 10− phred(t,R1)
10 (10)

and q2(t) is defined analogously for R2.
The initial probabilities from the start state S to 1C and 1O are set to

π(C) = 0.5 and π(O) = 0.5, respectively. The transition probabilities between
consecutive states (t − 1)b and tc, with b, c ∈ {C,O}, are defined using the
transition probability tr(d) for distance d between C/O positions t − 1 and t:

a(t−1)b,tc =
{

1 − tr(dt−1,t) b = c,
tr(dt−1,t) b �= c.

(11)

We can now compute the sought probability P (R1, R2), Eq. (8), using the
standard forward algorithm for HMMs [14]. The complexity of calculating the
probability of two reads originating from one chromatype using the forward
algorithm is O(T ), where T is the number of C/O positions in the overlapping
portion of the reads.

3 Data Simulation and Evaluation

To assess performance with respect to ground truth chromatypes, which are
usually not available for real data, we simulated NOMe sequencing experiments
in silico. Simulated data also serve to tune parameters as needed, in particular
δ, the threshold for the probability that two reads originate from cells with the
same chromatypes, and D, the minimum number of C/O positions we require
in the overlapping region of two reads.

3.1 Simulating Chromatypes

The reference sequence of human chromosome 1 was randomly annotated with
regions of open chromatin and closed chromatin. Regions of 177 bps were anno-
tated with a nucleosome (closed chromatin for 147 bps) followed by a linker DNA
(open chromatin for 30 bps) with a 60% probability. The whole region (177 bps)
was annotated as being open chromatin with a 40% probability. This process
of annotation was done along the complete chromosome 1. The process was
repeated four times in order to simulate four different chromatypes.

Virtual NOMe and bisulfite treatment was simulated as follows: GCHs in
nucleosome occupied regions were converted to GTHs. In regions not occupied
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by nucleosomes and in linker DNA regions, GCHs were retained. We randomly
methylated HCGs, i.e., sites of DNA methylation. In this way each chromatype
had distinct open chromatin (GCHs) and DNA methylation (HCGs) profiles,
where DNA methylation values are currently only used by epiG.

3.2 Simulating NGS Reads

Illumina sequencing reads were simulated (along with sequencing errors), indi-
vidually for each of the simulated chromatypes using the ART software [15] and
subsequently merged using samtools. The merged reads were aligned to the ref-
erence using BISMARK [16]. Four different sets of merged reads, 100 bp reads
at 40× and 80× coverage, as well as 200 bp reads at 40× and 80× coverage,
were created. We chose 100 bp reads since this is a common read length, while
200 bp reads were included to evaluate the impact of read length on performance.
ChromaClique and epiG were run individually on each of these datasets.

3.3 Evaluation Metric for Chromatype Reconstructions

The chromatype reconstructions produced by the algorithms were evaluated
based on the number of switches needed to reconstruct that particular super
read from the four ground truth simulated chromatypes. Each super read
(chromatype-reconstruction) was represented by a binary vector, Sr[x], contain-
ing 1 s and 0s, for open and closed positions, respectively.

For example, let S = 1O 42C 23C 9C be a reconstructed super read. This
super read can be represented as a binary vector Sr containing 1 s and 0 s for
open and closed positions respectively, Sr = [1, 0, 0, 0].

Because the super reads are aligned to the reference, similar vectors can be
constructed for each of the ground truth chromatypes that were used for simu-
lating the data. This produces a chromatype matrix Chr[c, x], where each row
c represents one of the ground truth chromatypes and each column x represents
the nucleosome state (1 or 0) at that position.

For example assume the following chromatype matrix Chr:

Chr[c, x] =

⎛

⎜⎜⎝

chromatype1 1 1 0 1
chromatype2 0 1 0 1
chromatype3 1 0 1 0
chromatype4 1 1 1 0

⎞

⎟⎟⎠. (12)

The number of switches (jumps from one original chromatype to another)
required to recreate a particular super read (read group in case of epiG), is
referred to as the switch error. SEi is the switch error for super read i. The
switch error can be efficiently calculated from the Sr[x] vector and the Chr[c, x]
matrix using dynamic programming.

With SE[c, x] we denote the switch error matrix, where a row c represents
one of the initial chromatypes and an entry in column x denotes the minimum
number of switches and mismatches needed to reconstruct a prefix of length x in
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the super read starting from the initial chromatype c. SE[c, x] can be formally
defined as follows:

SE[c, x] = min

⎧
⎨

⎩

0, if x = 0
SE[c′, x − 1] + mismatch(c, x), with c = c′ and x �= 0
SE[c′, x − 1] + 1 + mismatch(c, x) with c �= c′ and x �= 0,

(13)
where the case x = 0 serves as initialization for the DP computation. The func-
tion mismatch(c, x) returns 0 if the open chromatin value at position x is same
for the Sr vector and the row c in the corresponding chromatype matrix Chr.
mismatch(c, x) is defined as:

mismatch(c, x) =
{

0, if Sr[x] = Chr[c, x]
1, if Sr[x] �= Chr[c, x] . (14)

The minimum element in the last column of the SE[c, x] matrix represents the
minimum number of switches and mismatches required to reconstruct the super
read S from any of the given chromatypes. This is defined as the switch error of
the given super read.

Example Calculation. Recursive application of Eq. (13) on Sr and Chr yields
the following SE matrix:

SE[c, x] =

⎛

⎜⎜⎝

x 0 1 2 3 4
chromatype1 0 0 1 1 2
chromatype2 0 1 1 1 2
chromatype3 0 0 0 1 1
chromatype4 0 0 1 2 2

⎞

⎟⎟⎠. (15)

The minimum number of switches and mismatches needed to reconstruct the
super read S from the initial chromatypes in this example is 1.

Switch errors were calculated for each super read and the total prediction
error is then calculated as an average of the number of switch errors per C/O
position as follows:

PredictionError =
∑N

i SEi∑N
i Ti

, (16)

where N is the total number of super reads and Ti is the total number of C/O
positions in the ith super read.

3.4 Evaluation of the Chromatype Predictions

The super reads produced by ChromaClique were compared against the predic-
tions from epiG and also a BaseLine chromatype containing only closed posi-
tions. This section talks about the evaluation of the predictions of the different
algorithms.
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Evaluation of the Output from ChromaClique. ChromaClique outputs
a BAM file containing both paired-end and single-end super reads, which are
aligned to the reference. Each super read represents local reconstructions of a
chromatype. For a single-end super read, the Chr matrix and Sr vectors can be
directly constructed from the nucleotide positions (open or closed), in the super
read and the initial chromatypes used for simulation. Thus, the switch error can
be calculated directly.

However, for paired-end reads, there is missing information in between the
two read ends and the Chr matrix needs to be constructed for an individual
pair. Essentially, only positions that are overlapped by one of the reads in the
super read pair are part of the corresponding Chr matrix for that super read,
ignoring C/O positions in the reference that are not overlapped by the super
read.

Evaluation of the Output from epiG. The output from epiG is not exactly
the same as that from ChromaClique. While ChromaClique reports recon-
structed local chromatypes obtained by merging reads from the initial aligned
reads, epiG assigns reads to “epigenetic haplotypes” [9]. In order to compare
the outputs of both algorithms, the overlapping reads of epiG were merged using
the same algorithm that is used to merge the reads in ChromaClique. The switch
errors and prediction error for epiG were calculated using these merged reads as
explained above.

BaseLine Chromatype. In order to assess the performance of the algorithms
ChromaClique and epiG, a BaseLine chromatype was constructed, which was
composed of only closed positions. The idea of the BaseLine is to measure the
error for the simplest possible predictor. The switch error and prediction error
were calculated for the BaseLine chromatype in the same way. The percent-
age of coverage was varied for the BaseLine chromatype to simulate insufficient
coverage scenarios.

4 Results

We generated simulated data for the evaluation of the epiG and ChromaClique
algorithms. First, we compared the relationship between transition rates and
distances between our simulated data and real HepG2 NOMe sequencing data
(Fig. 4). As expected, the probability of observing a transition goes up as the
distance increases between two consecutive GCH occurrences and plateaus at
a certain value. This general trend is observed for both the real and simulated
data.

We then compared the performance of ChromaClique on the simulated
datasets to epiG [9], which was run in “NOMe-seq” mode with the minimum
number of GCH positions (min DGCH flag) set to 2. The way epiG outputs chro-
matypes is different from ChromaClique and therefore some post-processing was
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Fig. 4. Plots showing the transition rates at different distances between consecutive
GCH occurrences for forward strand reads mapped to chromosome 1 for HepG2 data
(left) and simulated data (right).

required to compare the two algorithms. epiG assigns each read to an epigenetic
haplotype (comparable to a chromatype). All reads belonging to a particular epi-
genetic haplotype were merged (in overlapping regions), and this was considered
as a reconstruction of a chromatype. Merging the overlapping reads was done
using the same merging algorithm as in ChromaClique. Each merged read group
from epiG was evaluated in the same way as each super read reported by Chro-
maClique. The performance of a BaseLine chromatype containing only closed
positions over the length of the considered region was evaluated as a control for
the performances of ChromaClique and epiG.

The evaluation was done using the prediction error, which denotes the average
number of switch errors obtained for all predicted super reads of a method
(see subsection 3.3). Another criterion for evaluation of the performance of the
different algorithms is the fraction of C/O positions in the original genomic
region that was covered by the reconstructed chromatypes. In this way, we can
assess the trade-off between a low switch error rate and a high fraction of C/O
positions covered. The threshold parameter δ in ChromaClique allows to adjust
this trade-off, whereas there are no such parameters in epiG. The evaluation was
restricted to a region of size 100000 bps, because epiG could not be run on the
whole chromosome 1, see below.

Figure 5 shows the prediction errors of ChromaClique (green triangles) for
thresholds varying from 0.000001 to 0.45, plotted against the fraction of C/O
positions that were covered by the predictions. Decreasing values of δ lead to
a higher fraction of GC regions being covered in the output while the errors
remain constant for a certain range of thresholds. Above a certain threshold, the
errors increase steadily. This behavior is noticed for all four different simulated
datasets. The least prediction errors were reported for the thresholds of 0.05 and
0.07 for 100 bp and 200 bp reads, respectively.



Chromatyping: Reconstructing Nucleosome Profiles 33

Fig. 5. Plots comparing the performance of ChromaClique with that of epiG and also
a BaseLine chromatype reconstruction for four simulated data sets with different read
lengths (100 or 200) and coverages (40x and 80x). (Color figure online)

We sampled varying percentages of the original GC positions to be covered by
the BaseLine chromatype. In this way, we mimicked different trade-offs between
error rate and fraction of covered positions, as shown by red circles in Fig. 5. For
all data sets, we noticed a trend towards higher prediction error rates when fewer
GC positions are covered. We observed that the number of switch errors decreases
at a smaller rate than the number of GC positions covered and therefore the
prediction error increases.

Figure 5 also shows the performance of epiG. Since epiG provides no param-
eter with which it can be tuned to get varying performances, only one error
value could be obtained for each simulated dataset (blue square). For the 100 bp
reads, the fraction of C/O positions covered by epiG is high at the cost of rela-
tively high error rates, which are hardly better than the BaseLine chromatype.
It seems to profit in terms of the prediction error with an increase in the length
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Fig. 6. Runtime of ChromaClique and epiG as a function of the length of the processed
region for 100 bp reads and 40x coverage.

of the reads to 200 bps, and yields error rates which are similar to those of Chro-
maClique. However, an unexpected drop in C/O position coverage is noticed for
the dataset with 200 bp reads and 80× coverage.

Figure 6 shows the runtimes of ChromaClique and epiG plotted against the
size of the genomic region from which the initial aligned reads were sequenced.
While ChromaClique’s runtime grows slowly (and appears almost constant at the
scale shown in Fig. 6), the runtime of epiG increases steadily with growing region
sizes. While ChromaClique can be run on a chromosome-wide scale (≈101 min
for the entire human chromosome 1 on 100 bp and 40X coverage data), the
runtime for epiG becomes prohibitively large for regions more than 1 million
base pairs.

5 Discussion and Conclusion

In this paper, we introduced ChromaClique, a novel algorithm to reconstruct
nucleosome profiles from NOMe-seq data. ChromaClique is the first tool that
scales to whole genomes. Furthermore, it outperforms epiG, the only competitor,
in terms of prediction error rates and prediction completeness.

ChromaClique comes with the advantage that it only considers read pairs
that have a sufficient C/O position overlap and then predicts whether the over-
lapping reads originate from the same chromatype. In contrast, epiG takes all
provided reads and decides which chromatype a read is to be assigned to based
on a likelihood score. That is, epiG assigns every read to a chromatype, but does
not output information on where the chromatype reconstructions are reliable.

We note that NOMe-seq provides information about open and closed nucle-
osome positions based on the GCH regions. It hence comes with the intrinsic
limitation of not being able to provide any information in GCH deserts. Thus, the
reconstruction of nucleosome profiles is not possible in regions of low GC density
using this protocol and we consider extending ChromaClique to accommodate
other data types a fruitful direction for future research.
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The runtime of ChromaClique depends on the number of cliques in the NOMe
read graph, where an edge between two reads is defined by read overlaps. The
number of cliques can potentially increase exponentially with an increase in the
coverage. For constant coverage, however, ChromaClique scales linearly with the
length of the considered region (in practice). epiG takes a different approach in its
optimization algorithm. Starting from all reads as singletons initially, it optimizes
for chains of reads that are overlapping each other using a likelihood formulation
that uses priors on preferred lengths of read chains to search through the large
space of possible combinatorial configurations. Thus, the optimization algorithm
in epiG depends on the initial size of the region selected, as non-overlapping reads
are considered to be part of the same haplotype chain throughout the algorithm.
Our experiments suggest that for moderate to high coverage values, the speed
of ChromaClique is sufficient and scales much better than the approach taken
in epiG.

ChromaClique has shown a consistent performance across the different sim-
ulated datasets in terms of prediction error and the length of C/O positions
covered. It consistently achieves lower error rates than epiG with the 100 bp
reads. For the 200 bp reads, epiG shows similar error values to ChromaClique
but lower coverage of C/O positions for the 80x case. One of the advantages
of ChromaClique over epiG is its ability to tune the performance using the
threshold parameter. This allows users to employ different thresholds for differ-
ent datasets. For our experiments with simulated data, the thresholds that were
most effective were between 0.05 to 0.07.

ChromaClique is a new method which allows for the reconstruction and sub-
sequent analysis of nucleosome profiles on a chromosome-wide scale. In future
work, it would be interesting to improve the simple simulation strategy by design-
ing a more realistic simulation scenario, by combining real NOMe-seq data sets
of different conditions. It would also be interesting to extend the model to con-
sider DNA methylation at CpG residues as well. A promising application domain
of ChromaClique is single cell NOMe-seq data, which we plan to explore in the
future.

Acknowledgments. We thank Karl Nordström, Gilles Gasparoni and Jörn Walter
for providing access to the HepG2 NOMe-seq data.
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Abstract. Many problems in applied machine learning deal with graphs
(also called networks), including social networks, security, web data min-
ing, protein function prediction, and genome informatics. The kernel
paradigm beautifully decouples the learning algorithm from the under-
lying geometric space, which renders graph kernels important for the
aforementioned applications.

In this paper, we give a new graph kernel which we call graph traversal
edit distance (GTED). We introduce the GTED problem and give the
first polynomial time algorithm for it. Informally, the graph traversal edit
distance is the minimum edit distance between two strings formed by
the edge labels of respective Eulerian traversals of the two graphs. Also,
GTED is motivated by and provides the first mathematical formalism for
sequence co-assembly and de novo variation detection in bioinformatics.

We demonstrate that GTED admits a polynomial time algorithm
using a linear program in the graph product space that is guaranteed
to yield an integer solution. To the best of our knowledge, this is the
first approach to this problem. We also give a linear programming relax-
ation algorithm for a lower bound on GTED. We use GTED as a graph
kernel and evaluate it by computing the accuracy of an SVM classifier
on a few datasets in the literature. Our results suggest that our kernel
outperforms many of the common graph kernels in the tested datasets.
As a second set of experiments, we successfully cluster viral genomes
using GTED on their assembly graphs obtained from de novo assembly
of next generation sequencing reads. Our GTED implementation can be
downloaded from http://chitsazlab.org/software/gted/.

1 Introduction

Networks, or graphs as they are called in mathematics, have become a common
tool in modern biology. Biological information from DNA sequences to protein
interaction to metabolic data to the shapes of important biological chemicals are
often encoded in networks.

One goal in studying these networks is to compare them. We might want
to know whether two DNA assembly graphs produce the same final sequences
c© Springer International Publishing AG, part of Springer Nature 2018
B. J. Raphael (Ed.): RECOMB 2018, LNBI 10812, pp. 37–53, 2018.
https://doi.org/10.1007/978-3-319-89929-9_3
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or how close the protein interaction networks of two related species are. Such
comparisons are difficult owing to the fact that determining whether two graphs
have an identical structure with different labels or vertex ordering is an NP-
complete problem. Therefore, any comparisons will need to focus on specific
aspects of the graph.

Here, we present the notion of graph traversal edit distance (GTED), a new
method of comparing two networks. Informally, GTED gives a measure of simi-
larity between two directed Eulerian graphs with labeled edges by looking at the
smallest edit distance that can be obtained between strings from each graph via
an Eulerian traversal. GTED was inspired by the problem of differential genome
assembly, determining if two DNA assembly graphs will assemble to the same
string. In the differential genome assembly problem, we have the de Bruijn graph
representations of two (highly) related genome sequence data sets, where each
edge e represents a substring of size k from reads extracted from these genome
sequences (e.g. one from a cancer tissue and the other from the normal tissue
of the same individual), and its multiplicity represents the number of times its
associated substring is observed in the reads of the respective genome sequence.
In this formulation, each vertex represents the k − 1 length prefix of the label
of its outgoing edges and the k − 1 length suffix of the label of its incoming
edges. Thus, the labels of all incoming edges of a vertex (respectively all outgo-
ing edges) are identical with the exception of their first (last) symbol. Differential
genome assembly has been introduced to bioinformatics in two flavors: (i) ref-
erence genome free version [1–5], and (ii) reference genome dependent version,
which, in its most general form, is NP-hard [6]. Both versions of the problem are
attracting significant attention in biomedical applications (e.g. [7,8]) due to the
reduced cost of genome sequencing (now approaching $1000 per genome sample)
and the increasing needs of cancer genomics where tumor genome sequences may
significantly differ from the normal genome sequence from the same individual
through single symbol edits (insertions, deletions and substitutions) as well as
block edits (duplications, deletions, translocations and reversals).

In addition to comparing assembly graphs, GTED can also be used to com-
pare other types of networks. GTED yields a (pseudo-)metric for general graphs
because it is based on the edit distance metric. Hence, it can be used as a graph
kernel for a number of classification problems. GTED is the first mathematical
formalism in which global traversals play a direct role in the graph metric. In
this paper, we give a polynomial time algorithm using linear programming that
is guaranteed to yield an integer solution. We use that as a graph kernel, and
evaluate the performance of our new kernel in SVM classification over a few
datasets. We also use GTED for clustering of viral genomes obtained from de
novo assembly of next generation sequencing reads. Note that GTED is a global
alignment scheme that is not immediately scalable to full-size large genomes,
like all other global alignment schemes such as Needleman-Wunsch. However,
GTED can form the mathematical basis for scalable heuristic comparison of
full-size large genomes in the future.
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Related Work

Many problems in applied machine learning deal with graphs, ranging from web
data mining [9] to protein function prediction [10]. Some important application
domains are biological networks such as regulatory networks, sequence assem-
bly and variation detection, and structural biology and chemoinformatics where
graphs capture structural information of macromolecules. For instance, machine
learning algorithms are often used to screen candidate drug compounds for safety
and efficacy against specific diseases and also for repurposing of existing drugs
[11]. Kernel methods elegantly decouple data representation from the learning
part; hence, graph learning problems have been studied in the kernel paradigm
[12]. Following [12], other graph kernels have been proposed in the literature [13].

A graph kernel k(G1, G2) is a (pseudo-)metric in the space of graphs. A ker-
nel captures a notion of similarity between G1 and G2. For instance for social
networks, k may capture similarity between their clustering structures, degree
distribution, etc. For molecules, similarity between their sequential/functional
domains and their relative arrangements is important. A kernel is usually com-
puted from the adjacency matrices of the two graphs, but it must be invariant
to the ordering (permutation) of the vertices. That property has been central in
the graph kernels literature.

Existing graph kernels that are vertex permutation invariant use either local
invariants, such as counting the number of triangles, squares, etc. that appear in
G as subgraphs, or spectral invariants captures as functions of the eigenvalues of
the adjacency matrix or the graph Laplacian. Essentially, different graph kernels
ranging from random walks [12] to shortest paths [14,15] to Fourier transforms on
the symmetric group [16] to multiscale Laplacian [17] compute local, spectral,
or multiscale distances. While most subgraph counting kernels are local [18],
most random walk kernels are spectral [13]. Multiscale Laplacian [17], Weisfeiler
Lehman kernel [19], and propagation kernel [20] are among the multiscale kernels.

In this paper, we introduce a graph kernel based on comparison of global
Eulerian traversals of the two graphs. To the best of our knowledge, our formal-
ism is the first to capture global architectures of the two graphs as well as their
local structures. Our kernel is based on the graph traversal edit distance intro-
duced in this paper. We show that a lower bound for GTED can be computed
in polynomial time using the linear programming relaxation of the problem. In
practice, the linear program often yields an integer solution, in which case the
computed lower bound is actually equal to GTED.

2 Problem Definition

Due to diversity of applications, input graphs can be obtained as molecular
structure graphs, social network graphs, systems biology networks, or sequence
assembly graphs such as de Bruijn graphs [21], A-Bruijn graphs [22], positional
de Bruijn graphs [23], string graphs [24], or implicit string graphs [25] among
numerous alternatives. Our graph traversal edit distance is inspired by those
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applications and can potentially be adapted to any of those frameworks. How-
ever, we choose below a general, convenient representative definition for the
problem. For the sake of brevity, we assume throughout this paper that the
input graph has one strongly connected component.

Fig. 1. Edge-labeled Eulerian graph. An edge-labeled Eulerian graph A =
(V,E,M,L, {A, C, G, T}) obtained from the k = 4 de Bruijn graph G = (V,E) for the
circular sequence ACAGACAT [26]. Vertices, V , correspond to (k − 1)-mers and edges
correspond to k-mers. In this case, all the edges have multiplicity one, i.e. M ≡ 1.
Edge labels, L, show the kth nucleotide in the associated k-mers.

Definition 1 (Edge-labeled Eulerian Graph). Let Σ be a finite alphabet.
We call a tuple A = (V,E,M,L,Σ) an edge-labeled Eulerian graph, in which

– G = (V,E) is a strongly connected directed graph,
– M : E → N specifies the edge multiplicities,
– L : E → Σ specifies the edge labels,

iff G with the corresponding edge multiplicities, M , is Eulerian. That is, G con-
tains a cycle (or path from a specified source to a sink) that traverses every
edge e ∈ E exactly M(e) times. Throughout this paper, we mean M -compliant
Eulerian by an Eulerian cycle (path) in A.

Figure 1 demonstrates an example edge-labeled Eulerian graph for the circu-
lar sequence ACAGACAT in the alphabet Σ = {A, C, G, T}. The sequence of edge
labels over the Eulerian cycle formed by c1 followed by c2 yields the original
sequence. The following definition makes a connection between Eulerian cycles
and different sequences they spell.

Definition 2 (Eulerian Language). Let A = (V,E,M,L,Σ) be an edge-
labeled Eulerian graph. Define the word ω associated with an Eulerian cycle
(path) c = (e0, . . . , en) in A to be the word

ω(c) = L(e0) . . . L(en) ∈ Σ∗. (1)

The language of A is then defined to be

L(A) = {ω(c) | c is an Eulerian cycle (path) in A} ⊂ Σ∗. (2)

We now define graph traversal edit distance (GTED).
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Problem 1 (Graph Traversal Edit Distance). Let A1 and A2 be two edge-labeled
Eulerian graphs. We define the edit distance between A1 and A2 by

d(A1, A2) = min
ω1∈L(A1)
ω2∈L(A2)

d(ω1, ω2), (3)

in which d(ω1, ω2) is the Levenshtein edit distance between two strings ω1 and
ω2. Throughout this paper, edit operations are single alphabet symbol insertion,
deletion, and substitution, and the Levenshtein edit distance is the minimum
number of such operations to transform ω1 to ω2 [27].

Note that d(A1, A2) is the minimum of such edit distances over the words of
possible Eulerian cycles (paths) in A1 and A2. Note that GTED is almost a
metric but not a metric since there are A1, A2 such that d(A1, A2) = 0 even
though A1 �= A2. For instance, let A1 be an arbitrary Eulerian graph and A2 be
a cycle graph whose edge labels are the same as an arbitrary Eulerian cycle in
A1. As a result, the graph traversal edit distance is different from the graph edit
distance because the latter is a metric whereas the former is not.

3 Methods

3.1 Brute Force Computation of Graph Traversal Edit Distance

It is clear that there are algorithms, albeit with exponential running time, that
enumerate all Eulerian cycles in a graph. Through brute force Needleman-
Wunsch alignment of the words of every pair of Eulerian cycles in A1 and
A2, we can compute the edit distance right from the definition. De Bruijn,
van Aardenne-Ehrenfest, Smith, and Tutte proved the de Bruijn-van Aardenne-
Ehrenfest-Smith-Tutte (BEST) theorem [28,29], which counts the number of
different Eulerian cycles in A as

ec(A) = tw(A)
∏

v∈V

(deg(v) − 1)!, (4)

in which tw(A) is the number of arborescences directed towards the root at
a fixed vertex w, and deg is the indegree (or equally outdegree) considering
multiplicities. The number of Eulerian cycles ec(A) is exponentially large in
general. Therefore, the näıve brute force algorithm is intractable.

3.2 Graph Traversal Edit Distance as a Constrained Shortest Path
Problem

The conventional string alignment problem can be transformed into a shortest
path problem in an alignment graph which is obtained by adding appropriate
edges to the Cartesian product of the two string graphs. Figure 2 illustrates an
example; further details can be found in a bioinformatics textbook such as [26].
Analogously, the graph traversal edit distance d(A1, A2) can be written as the
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Fig. 2. Left: conventional alignment graph. The alignment graph for AC versus
AGC. Those edges that correspond to matches are in dashed lines (cost of a match is
often 0). Solid lines show substitutions and indels which usually have a positive cost.
The edit distance is the shortest distance from s to t in this graph (shown in blue).
Right: example of an alignment graph. The lower graph is an alignment graph for
the two above graphs. Edges can have different costs, based on the edit operations for
each pair of alphabets in the language. (blue edges correspond to math or mismatch
and black edges correspond to insertion or deletions. (Color figure online)

length of the shortest cycle (or path from a designated source to a designated
sink) in the alignment graph defined below, whose projection onto A1 and A2 is
Eulerian. To state that fact in Lemma1, we need

Definition 3 (Alignment Graph). Let A1 = (V1, E1,M1, L1, Σ1) and A2 =
(V2, E2,M2, L2, Σ2) be two edge-labeled Eulerian graphs. Define the alignment
graph between A1 and A2 to be AG(A1, A2) = (V1 × V2, E), in which E is a
collection of horizontal, vertical, and diagonal edges as follows:

– Vertical: ∀ e1 = (u1, v1) ∈ E1 and u2 ∈ V2 : e1 ×u2 = [(u1, u2), (v1, u2)] ∈ E,
– Horizontal: ∀ u1 ∈ V1 and e2 = (u2, v2) ∈ E2 : u1 × e2 = [(u1, u2), (u1, v2)] ∈

E,
– Diagonal: ∀ e1 = (u1, v1) ∈ E1 and e2 = (u2, v2) ∈ E2 : [(u1, u2), (v1, v2)] ∈

E.

There is a cost δ : E → R associated with each edge of AG based on edit oper-
ation costs. Horizontal and vertical edges correspond to insertion or deletion and
diagonal edges correspond to match or mismatch (substitution). A diagonal edge
[(u1, u2), (v1, v2)] is a match iff L(u1, v1) = L(u2, v2) and a mismatch otherwise.
We call Ai the ith component graph. See Fig. 2 for an example.

The following Lemma states the fact that GTED is equivalent to a con-
strained shortest path problem in the alignment graph.
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Lemma 1. For any two edge-labeled Eulerian graphs A1 = (V1, E1,M1, L1, Σ1)
and A2 = (V2, E2,M2, L2, Σ2),

d(A1, A2) = minimize
c

δ(c)

subject to c is a cycle (path) in AG(A1, A2),
πi(c) is an Eulerian cycle (path) in Ai for i = 1, 2,

(5)
in which δ(c) is the total edge-cost (edit cost) of c, and πi is the projection onto
the ith component graph.

Proof. For every pair (c1, c2), in which ci is an Eulerian cycle (path) in Ai,
there are possibly multiple c’s with πi(c) = ci, whose minimum total edge-
cost is d(ω(c1), ω(c2)). Therefore, the result of the minimization in (5) is not
more than d(A1, A2), i.e. the right hand side is less than or equal to d(A1, A2).
Conversely, every c that satisfies the constraints in (5) gives rise to an Eulerian
pair (c1, c2) = (π1(c), π2(c)) and δ(c) ≥ d(ω(c1), ω(c2)) ≥ d(A1, A2), i.e. the
right hand side is greater than or equal to d(A1, A2).

3.3 Lower Bound via Linear Programming Relaxation

Lemma 1 easily transforms our problem into an integer linear program (ILP)
as the projection operator πi is linear and imposing path connectivity/cycle is
also linear. More precisely, consider two edge-labeled Eulerian graphs A1 and A2

with the alignment graph AG(A1, A2) = (V1 ×V2, E), and let ∂ be the boundary
operator, ∂(e) = v − u for an edge e = (u, v), which is defined in detail below.
Our algorithm consists in solving the linear programming (LP) relaxation of that
ILP,

minimize
x∈R|E|

∑

e∈E

xeδ(e)

subject to
∑

e∈E

xe∂(e) = 0 (or sink − source),

∀ e ∈ E, xe ≥ 0,

for i = 1, 2,∀ f ∈ Ei,
∑

e∈E

xeIi(e, f) = Mi(f),

(6)

in which indicator function I1(e, f) = 1 iff e = f × v2 or e = [(u1, u2), (v1, v2)]
with f = (u1, v1); otherwise, I1(e, f) = 0. Similarly, I2(e, f) = 1 iff e = v1 × f
or e = [(u1, u2), (v1, v2)] with f = (u2, v2); otherwise, I2(e, f) = 0. The linear
program above is not guaranteed to give an integer solution; however, we have
observed integer solutions in many scenarios. Nevertheless, the solution of (6)
is a lower bound for GTED. Theoretically, both the lower bound and the exact
GTED take polynomial time. However, the lower bound has a simpler linear
program and is easier to implement, debug, back trace, and work with.
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3.4 Algorithm for Graph Traversal Edit Distance

The following theorem is the main result of this paper which bridges the gap
between GTED and another linear programming formulation which we will show
is guaranteed to have an exact integer solution. Hence, GTED has a polynomial
time algorithm explained as a linear program; Corollary 1 states that fact below.

Theorem 1 (GTED). Consider two edge-labeled Eulerian graphs Ai = (Vi,
Ei,Mi, Li, Σi) with Gi = (Vi, Ei) for i = 1, 2. Let T be the collection of two-
simplices in the triangulated G1×G2 with one-faces in AG(A1, A2). In that case,

d(A1, A2) = minimize
x∈R|E|,y∈R|T |

∑

e∈E

xeδ(e)

subject to x = xinit + [∂] y,

∀ e ∈ E, xe ≥ 0,

(7)

in which [∂]|E|×|T | is the matrix of the two-dimensional boundary operator in the
corresponding homology and

xinit
e =

⎧
⎨

⎩

M1(f) if e = f × s2
M2(f) if e = s1 × f
0 otherwise

(8)

for arbitrary fixed si ∈ Vi (source/sink in the case of path).

Proof. It is sufficient to show two things:

1. GTED is equal to the solution of the integer linear program (ILP) version of
the linear program in (7),

2. the linear program in (7) always yields an integer solution.

Using Lemma 1, we need to show that (5) and (7) are equivalent for the first one.
By construction, xinit corresponds to an Eulerian cycle (path) in A1 followed by
one in A2, which specifies a cycle (path) in AG(A1, A2) whose projection onto Ai

is Eulerian. It is sufficient to note that every cycle (path) whose projection onto
Ai is Eulerian is homologous to xinit. To see that, let c be a cycle (path) whose
projection onto Ai is Eulerian. First note that diagonal edges in c are homologous
to the horizontal edge followed by the vertical edge in the corresponding cell.
Hence, diagonal edges can be replaced by the horizontal followed by the vertical
edge using the boundary operator [∂]. Hence without loss of generality, we assume
c contains only horizontal and vertical edges.

If edges in c are h1, h2, . . . , hm, k1, k2, . . . , kn such that hi = ei × s2 and ki =
s1×fi for ei ∈ E1 and fi ∈ E2, then we are done. We know that such c has exactly
the same representation as xinit. If edges in c are h1, h2, . . . , hm, k1, k2, . . . , kn

such that hi = ei × v2 and ki = v1 × fi for ei ∈ E1 and fi ∈ E2 and possibly
v1 �= s1 or v2 �= s2, then we can rotate the cycle through adding and subtracting
a perpendicular translation edge and apply the boundary replacement operation
to obtain a homologous cycle (path) of the form h1, h2, . . . , hm, k1, k2, . . . , kn
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such that hi = ei × s2 and ki = s1 × fi for ei ∈ E1 and fi ∈ E2. Starting with
an arbitrary c, we show how to obtain a homologous cycle (path) in the form of
h1, h2, . . . , hm, k1, k2, . . . , kn such that hi = ei × v2 and ki = v1 × fi for ei ∈ E1

and fi ∈ E2 through basic boundary replacement operations. Essentially, we
show that we can swap vertical and horizontal edges along c until we end up
with all horizontal edges grouped right up front followed by all vertical edges
grouped at the end. Suppose c contains k, h as a subpath for h = e × v2 and
k = u1 × f and e = (u1, v1) ∈ E1 and f = (u2, v2) ∈ E2. The subpath k, h is
homologous to h′, k′ in which h′ = e × u2 and k′ = v1 × f since the four edges
k, h,−k′,−h′ form the boundary of a square. Hence, we can replace k, h with
h′, k′ in c to obtain a homologous cycle (path) c′. Performing a number of such
vertical-horizontal swaps will yield the result. The second is going to be shown
in the following sections.

Corollary 1 (GTED complexity). The graph traversal edit distance is
in P and can be solved in polynomial time from the linear program in (7) that
is guaranteed to give the integer solution.

3.5 Total Unimodularity

Using a recent result of Dey et al. [30], we show that (7) is guaranteed to yield
an integer solution. The main reason is that the boundary operator matrix [∂] is
totally unimodular, i.e. all its square submatrices have a determinant in {0,±1}.
Therefore, all vertices of the constraint polytope in (7) have integer coordinates;
hence, the solution is integer.

Why is [∂] totally unimodular? According to [30, Theorem 5.13], [∂] is totally
unimodular iff the simplicial complex G1 × G2 has no Möbius subcomplex of
dimension 2. For the sake of completeness, we include the definition of a Möbius
complex below.

Definition 4 ([30, Definition 5.9]). A two-dimensional cycle complex is a
sequence σ0 · · · σk−1 of two-simplices such that σi and σj have a common face
iff j = (i + 1) mod k and that the common face is a one-simplex. It is called
a two-dimensional cylinder complex if orientable and a two-dimensional Möbius
complex if nonorientable.

Lemma 2. A triangulated graph product space G1 × G2 does not contain a
Möbius subcomplex, for directed graphs Gi with unidirectional edges.

Proof. It is enough to observe that in G1 ×G2, the orientation in one coordinate
cannot flip. For brevity of presentation, we ignore triangulation for a moment
and consider the rectangular cells. To the contrary, assume G1 × G2 contains
a Möbius subcomplex σ0 · · · σk−1 in which every σi is a rectangle ei × fi, for
ei ∈ E1 and fi ∈ E2. Since every σi and σi+1 have a common edge and G1, G2

are directed graphs with unidirectional edges, either ei+1 = ei or fi+1 = fi

but not both. In particular, e0 = ek−1 or f0 = fk−1. That is a contradiction
because σ0 · · · σk−1 is then a cylinder subcomplex (orientable) and not a Möbius
subcomplex.
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Lemma 2 together with [30, Theorem 5.13] assert that [∂] is totally unimod-
ular. Therefore, (7) always has an integer solution, hence the main result in
Theorem 1.

Lack of Möbius subcomplexes in the product space of graphs, which are
Möbius-free spaces, can also be seen from the fact that the homology groups
of graph product spaces are torsion-free. The following section summarizes that
characterization.

3.6 Homology Theory of Alignment Graph

An alignment graph AG(A1, A2) is essentially a topological product space with
additional triangulating diagonal edges corresponding to matches and mis-
matches. In other words, AG(A1, A2) can be regarded as a triangulation of the
two-dimensional CW complex G1 × G2 (by horizontal, vertical, and diagonal
edges). Note that G1×G2 has zero-dimensional vertices (v1, v2), one-dimensional
edges e1 × v2 and v1 × e2, and two-dimensional squares e1 × e2 for vi ∈ Vi

and ei ∈ Ei. We characterize below the homology groups of G1 × G2 using
the Künneth’s theorem. Note that Gi are obtained from edge-labeled graphs
Ai = (Vi, Ei,Mi, Li, Σi).

Theorem 2 (Künneth [31]). For graphs Gi = (Vi, Ei), i = 1, 2,

Hm(G1 × G2,Z) ∼=
⊕

p+q=m

Hp(G1,Z) ⊗ Hq(G2,Z)

⊕

r+s=m−1

Tor(Hr(G1,Z),Hs(G2,Z)),
(9)

in which Hm is the mth homology group and Tor is the torsion functor [31].
Since G1 × G2 is a two-dimensional CW complex, Hm(G1 × G2,Z) ∼= 0 for

m > 2. Clearly, H0(G1 × G2,Z) ∼= Z since G1 × G2 is connected. According to
the Künneth’s theorem above and the fact that Tor(Z,Z) ∼= 0 and Z

k ⊗ Z ∼=
Z ⊗ Z

k ∼= Z
k [32],

H1(G1 × G2) ∼= [H1(G1) ⊗ H0(G2)] ⊕ [H0(G1) ⊗ H1(G2)] ⊕ Tor(H0(G1), H0(G2))

∼= [Zn1 ⊗ Z] ⊕ [Z ⊗ Z
n2 ] ⊕ Tor(Z,Z) ∼= Z

n1 ⊕ Z
n2 ∼= Z

n1+n2 ,

(10)
in which ni = 1 + |Ei| − |Vi|. Note that H1(G1, G2) is torsion-free.

Using the Künneth’s theorem above and the fact that the tensor product
of groups ⊗ distributes over the direct sum ⊕, H2(Gi) ∼= 0, Tor of torsion-free
groups is trivial, and Z ⊗ Z ∼= Z, we obtain

H2(G1 × G2) ∼= [H1(G1) ⊗ H1(G2)] ⊕
Tor(H1(G1),H0(G2)) ⊕ Tor(H0(G1),H1(G2))

∼= [Zn1 ⊗ Z
n2 ] ⊕ Tor(Zn1 ,Z) ⊕ Tor(Z,Zn2)

∼=
n1⊕

i=1

n2⊕

j=1

Z ⊗ Z ∼= Z
n1n2 .

(11)

Note that H2(G1, G2) is torsion-free.
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4 Experiments

4.1 Using GTED to Make a Kernel

As mentioned earlier, since GTED is a measure of distance or dissimilarity
between two graphs, we can use it to make a kernel of distance of pair of graphs
in a dataset, and this can be used for classification problems. We implemented a
C++ program that generates the linear program for the problem. First, it builds
the alignment graph AG for two given graphs A1 = (V1, E1) and A2 = (V2, E2)
where Vi and Ei are vertices and edges of the ith graph. It begins with |V1|×|V2|
vertices that are labeled as (v1, v2) for each v1 ∈ V1 and v2 ∈ V2. For each edge
(u1, v1) ∈ E1 and vertex u2 ∈ V2 we add the vertical edge [(u1, u2), (v1, u2)] with
a gap penalty δ1 to our grid, AG. We also add a horizontal edge [(u1, u2), (u1, v2)]
for each vertex u1 ∈ V1 and edge (u2, v2) ∈ E2 with the same cost δ1. Then,
for each pair of edges (u1, v1) ∈ E1 and (u2, v2) ∈ E2 we add a diagonal edge
[(u1, u2), (v1, v2)], with a mismatch penalty δ2 if (u1, v1) has a different label
from (u2, v2), or a match bonus δ3 if the labels are the same. The cost values are
taken as arguments, with default values of δ1 = δ2 = 1 and δ3 = 0. This can be
further extended to different penalties for insertion and deletion (i.e. different
cost for horizontal and vertical edges).

The C++ program also creates a projection set for each edge in either of
the input graphs. Each vertical edge [(u1, u2), (v1, u2)] is added to the projection
set of the edge (u1, v1) ∈ E1, each horizontal edge [(u1, u2), (u1, v2)] to the set
of (u2, v2) ∈ E2, and each diagonal edge [(u1, u2), (v1, v2)] to projection sets of
both (u1, v1) ∈ E1 and (u2, v2) ∈ E2.

Our program then extracts a linear programming problem from the align-
ment graph by assigning a variable xi to the ith edge of AG. The objective
function minimizes weighted sum

∑
e∈E,δ(e)>0 xeδ(e). Then, the constraints will

be generated. There are two different groups of constraints. The first group forces
the vertices of the grid to have the same number of incoming edges and outgo-
ing edges, forcing the output to be a cycle in the alignment graph. The second
group forces the size of the projection set for each edge of the input graphs to
be equal to its weight in that input graph, forcing the projection of the output
to be Eulerian in both input graphs.

We used an academic license of Gurobi optimizer to solve the linear program.
Since the variables are already supposed to be non-negative, it was not necessary
to add inequalities to the LP for this purpose.

Data. We tested our graph kernel on four data sets. The Mutag data set con-
sists of “aromatic and heteroaromatic nitro compounds tested for mutagenicity.”
Nodes in the graphs represent the names of the atoms. The Enzymes dataset is
a protein graph model of 600 enzymes from BRENDA database which contains
100 proteins each from 6 Enzyme Commission top level classes (Oxidoreduc-
tases, Transferases, Hydrolases, Lyases, Isomerases and Ligases). Protein struc-
tures are represented as nodes, and each node is connected to three closest
proteins on the enzyme. The NCI1 dataset is derived from PubChem website
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[pubchem.ncbi.nlm.nih.gov] which is related to screening of human tumor (Non-
Small Cell Lung) cell line growth inhibition. Each chemical compound is repre-
sented by their corresponding molecular graph where nodes are various atoms
(Carbon, Nitrogen, Oxygen etc.) and edges are the bonds between atoms (single,
double etc.). The class labels on this dataset is either active or inactive based on
the cancer assay. The PTC dataset is part of Predictive Toxicology Evaluation
Challenge. This dataset is composed of graphs representing chemical structure
and their outcomes of biological tests for the carcinogenicity in Male Rats (MR),
Female Rats (FR), Male Mice (MM) and Female Mice (FM). The task is to clas-
sify whether a chemical is POS or NEG in MR, FR, MM and FM in terms of
carcinogenicity.

Pre-processing and Post-processing. We use the Chinese Postman algo-
rithm to make the input graphs Eulerian by adding the minimum amount of
weights to the existing edges of the graphs. For directed graphs, we can use them
directly in our algorithm, but for undirected graphs, we consider two edges in
opposite directions for each undirected edge, and treat the two created opposite
edges as separate variables in our linear programming problem.

Because our method requires edge labels, for those datasets such as Enzymes
that have no edge labels, we use the concatenation of the source node label and
the destination node label to make a label for every edge. To make the direction
of the edge irrelevant, when we are comparing the two edge labels to see whether
they match, we check both the equality of label of one to the label of the other
or to the reverse label of the other edge which is obtained by reversing ordering
of the source and destination nodes.

After computing the distance value between each pair of graphs, we have
higher values for more distant (less similar) graphs. To prepare a normalized
kernel to be used in other implemented classifiers like SVM, we have to map
initial values such that for more similar graphs we obtain higher values (1 for
identical pairs). To make this transformation, we have used two simple methods,
and for each dataset we have used both of them and chose the one that gives us
the best results during the cross validation on the training set. Then, this chosen
method is used on the test set to get the final accuracy. The first method is to
use f(x) = 1

x+1 as the map function. The second method is to use the function
f(x) = 1 − x−min

max−min to map the distance values. Here, the max and min show
the maximum and minimum distance values that we have among all possible
pairs of graphs. Since we get 0 for identical graphs, the min is always 0. Hence,
the map function can be simplified to f(x) = 1 − x

max . Both methods will give
us 1 for similar graphs that have GTED values of 0, and numbers between 0 and
1 for more distant graphs. The more distant the pair of graphs are, the less the
corresponding value in the kernel will be. Table 1 presents the overall running
times for computing the kernel for each benchmark dataset.

https://pubchem.ncbi.nlm.nih.gov
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Table 1. Running time for kernel computations for graph pairs, which were distributed
into a cluster of 80 computers. Graph pairs = n(n−1)

2
, where n is the number of graphs.

Dataset #Graphs #Pairs Chinese postman (sec) Kernel computation (min)

MUTAG 188 17,578 3 3

Enzymes 600 179,700 50 35

NCI1 4110 8,443,995 300 1760

PTC 414 85,491 47 17

Results. To evaluate whether this method works well at capturing the similarity
and classifying the graphs, we used some benchmark datasets that are used to
compare the graph kernels. We compare the kernels by evaluating the accuracy
of an SVM classifer that uses them for classification. We used the same settings
as in [17] so we can compare our results with previously computed results for
other kernels. In this setting, we split the data randomly to two parts, 80% for
training and 20% for testing. Then, we computed results for 20 different splitting
using different random seeds. It can be seen from the table below that for the
Mutag [33] and Enzymes [10] datasets, our kernel outperforms the other kernels.
In the results table, we copied the values in [17] for other kernels.

Kernel/Dataset Mutag [33] Enzymes [10] NCI1 [34] PTC [35]

WL [19] 84.50(±2.16) 53.75(±1.37) 84.76(±0.32) 59.97(±1.60)

WL-Edge [18] 82.94(±2.33) 52.00(±0.72) 84.65(±0.25) 60.18(±2.19)

SP [14] 85.50(±2.50) 42.31(±1.37) 73.61(±0.36) 59.53(±1.71)

Graphlet [18] 82.44(±1.29) 30.95(±0.73) 62.40(±0.27) 55.88(±0.31)

p-RW [12] 80.33(±1.35) 28.17(±0.76) TIMED OUT 59.85(±0.95)

MLG [17] 84.21(±2.61) 57.92(±5.39) 80.83(±1.29) 63.62(±4.69)

GTED 90.12(±4.48) 59.66(±1.84) 65.83(±1.14) 59.08(±2.11)

Analysis. As shown in the table, our kernel achieves a higher accuracy on the
Mutag and Enzymes datasets but gets average result on PTC and relatively
weaker result on NCI1, as compared to other methods. Actually, none of the
existing kernels can get the best results on all different kinds of data because
each kernel captures only some features of the graphs. The Eulerian traversals of
the graphs can be very informative for some specific applications, like Mutag. The
aromatic and heteroaromatic chemical compounds in Mutag mostly consist of
connected rings of atoms. These constituent rings can give us a good measure of
proximity of two compounds. Since the language of Eulerian traversals includes
the traversal of these rings in each compound, finding the minimum distance
between the strings of the languages (which are built by the labels of the nodes
that represent the name of atoms) for two different compounds can provide a
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measure of the similar structures that they contain. That is why we get the best
result for this dataset using our kernel.

Similarly, GTED outperforms the other kernels in the enzymes dataset. The
enzymes in this dataset have certain shapes consisting of various protein struc-
tures (the nodes), and the combination of the individual structures and the
nearby proteins gives us a good sense of the structure of the enzyme. In this
case, Eulerian cycles usually give us a good approximation for the general spa-
tial structure of the enzyme which leads to a good score.

The algorithm performed less well on the NCI1 and PTC data sets. We are
uncertain of why this is, but it seems likely that the critical properties of the
relevant chemicals are not captured by the Eulerian traversal.

4.2 Using GTED on Genomic Data

As mentioned earlier, the original goal of GTED was to find the best alignment
of two genomes using only the assembly graphs, without having to create an
assembled sequence first. The common alignment methods that compute the
Levenshtein edit distance cannot take many factors into account, like having
trans-locations in the genome, or the fact that assembly graphs could have mul-
tiple Eulerian cycles. Our method finds the best alignment among all possible
alignments for all possible pairs of reference genomes that can be derived from
the assembly graphs. As a result, it gives us a good measure to compute the dis-
tance (or similarity) between genomic sequences, and hence a way to cluster a
group of samples. Therefore, to evaluate our method on genomic data, we chose
genomes of Hepatit B viruses in five different vertebrates; the virus in two of
them (Heron and Tinamou) belong to Avihepadnavirus genus, and the ones in
three of them (Horseshoe bat, Tent-making bat, and Woolly monkey) belong to
Orthohepadnavirus genus.

Pre-processing and post-processing. First, for each pair of sequences we
wished to compare, we generated a colored de Bruijn graph, a de Bruijn graph
(assembly graph) that combines multiple samples in a single assembly graph with
k-mers from different samples identified using different colored edges. We then
extracted the graph for each specific color (genome). The linear programming
problem for this experiment is produced almost like before; the difference here
is that instead of using the second set of constraints to enforce that all edges
of the input graphs are used exactly as many times as their multiplicities (an
Eulerian cycle), we add the absolute value of the difference of the number of
times that an edge is used in the alignment graph and its original weight in the
corresponding input graph to the objective function of the LP. This way, we try
to minimize this difference but allow some discrepancies. The extra flexibility
seems necessary in this case, because the input graphs are large and contain
numerous sources of error: sequencing errors, using cutoffs for edges, and crude
estimates of the weights of the edges based on the coverage of sequences in the
colored de Bruijn graph mean that the edge multiplicities are not completely
accurate.
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Results. The whole pre-processing step and generating the results took 4 h on
30 CPUs for each pair of viruses. Numbers in the table below are the computed
distance of each of these pairs of graphs. As represented in the table, it can
be seen that the intra-genus distances are lower than inter-genus distances. We
believe, based on these numbers, a good estimate of the similarity of the genomes
can be made, both for genomes in the same genus and the ones with various
genus.

Heron Tinamou Horseshoe bat Tent-making bat W. monkey
Heron - 1016 1691 1639 1659

Tinamou 1016 - 1699 1638 1640
Horseshoe bat 1691 1699 - 1347 1296

Tent-making bat 1639 1638 1347 - 1429
Woolly monkey 1659 1640 1296 1429 -

5 Conclusion

In this paper we have introduced GTED, a new method for comparing networks
based on a traversal of their edge labels. We have shown that GTED admits
a polynomial time algorithm using a linear program. This linear program is
guaranteed to have an integer solution due to the fact that the boundary operator
function is totally unimodular, giving us an exact solution for the minimum
possible edit distance.

The GTED problem was originally designed to be a formalization of the dif-
ferential genome assembly problem, comparing DNA assembly graphs by consid-
ering all their possible assembled strings. It performs well at that task, success-
fully differentiating different genera of the Hepatitis B virus. We tested GTED
on viral genomes since GTED is a global alignment scheme that is not immedi-
ately scalable to full-size large genomes, like all other global alignment schemes
such as Needleman-Wunsch. However, GTED can form the mathematical basis
for scalable heuristic comparison of full-size large genomes in the future. GTED
can also be used as a general graph kernel on other types of networks, performing
particularly well on graphs whose Eulerian traversals provide a good insight into
their important structural features.

GTED is a new way of measuring the similarity between networks. It has
many applications in differential genome assembly, but it also performs well in
domains beyond assembly graphs. GTED has the potential to be a valuable tool
in the study of biological networks.
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Abstract. The regulation of organelle abundance sustains critical bio-
logical processes, such as metabolism and energy production. Biochem-
ical models mathematically express these temporal changes in terms of
reactions, and their rates. The rate parameters are critical components
of the models, and must be experimentally inferred. However, the exist-
ing methods for rate inference are limited, and not directly applicable to
organelle dynamics.

This manuscript introduces a novel approach that integrates mod-
eling, inference and experimentation, and incorporates biological repli-
cates, to accurately infer the rates. The approach relies on a biochemical
model in form of a stochastic differential equation, and on a parallel
implementation of inference with particle filter. It also relies on a novel
microscopy workflow that monitors organelles over long periods of time in
cell culture. Evaluations on simulated datasets demonstrated the advan-
tages of this approach in terms of increased accuracy and shortened com-
putation time. An application to imaging of peroxisomes determined that
fission, rather than de novo generation, is predominant in maintaining
the organelle level under basal conditions. This biological insight serves
as a starting point for a system view of organelle regulation in cells.

Keywords: Bayesian inference · Stochastic differential equation
Stochastic process · Particle filter · Organelles · Replicate
Peroxisomes

1 Introduction

Eukaryotic cells are organized into subcellular membrane-bound structures, such
as the mitochondria, peroxisomes, and endosomes, known as organelles (Fig. 1).
Dynamic control of organelle abundance is fundamental for cellular homeostasis,
allowing cells to adapt to their environmental, metabolic, and energetic needs
[1–4]. Genetic mutations that affect organelle dynamics are known to cause severe
diseases in humans [5].
c© Springer International Publishing AG, part of Springer Nature 2018
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The understanding of organelle dynamics has been central in basic cell biol-
ogy research. The processes inducing changes in organelle abundance are well-
known. These include organelle production by fission and/or de novo biogenesis,
as well as organelle destruction by fusion and/or degradation [6–8].

However, the integration of these individual processes into the overall con-
trol of organelle abundance remains unclear. Although genetic mutations and
pharmacological interventions have provided insight into individual mechanisms,
the uncovered pathways shared components, thus complicating the integration
[1,3,4]. Development of a biochemical model of organelle dynamics is therefore
a valuable approach for gaining biological insight into organelle regulation.

Biochemical models express temporal changes in organelle abundance in
terms of basic mechanistic processes called reactions. Since organelle abundances
are typically low (tens to hundreds), a stochastic biochemical model [9] is best
suited to model their temporal evolution [10].

Stochastic biochemical models characterize reactions with rate parameters,
which relate the speed of occurrence of the reaction to organelle counts. In
complex biological systems, the rate parameters cannot be determined from first
principles, and have to be inferred from experimental measurements collected
over time. Here, we propose an integrated microscopy and computational method
to infer the rates that regulate organelle abundance from time course organelle
counts in cell culture, as we demonstrate for peroxisomes.

Peroxisomes are critical organelles required for cell detoxification and lipid
metabolism [3]. Fluorescence microscopy allows us to simultaneously count per-
oxisomes from multiple cells in the course of time in a minimally invasive manner.
However, technological limitations restrict the experiments to less than 100 time
points per cell, which for inference purposes is considered sparse. The counts are
furthermore contaminated by biological and technological variation [11].

Here we argue that, similarly to any other area of data-driven research, rate
inference in sparse settings is improved by conducting experiments with mul-
tiple cell replicates. Although extending the biochemical models of organelle
regulation to replicated experiments is straightforward in theory, it is challeng-
ing in practice. First, the replicates complicate modeling and inference of rate
parameters, as expressing cellular heterogeneity dramatically increases the com-
putational cost. Second, long-term imaging of organelles (for over 8 h) is required
to observe consistent changes in counts across cells. This is difficult to do for a
single cell, and even more so for multiple cells. To our knowledge, there are no
reports of peroxisome imaging for this length of time. As a result, previous stud-
ies are limited, focused on simulated data [12] or on transcription [13]. They are
not applicable to studies of organelle dynamics.

To overcome the limitations above, we describe an algorithm for inferring
rate parameters in biochemical models from replicated experiments, and an
imaging method that supports the inference by long-term monitoring of per-
oxisome counts in multiple live cells. This algorithm takes as input peroxisome
counts, acquired from fluorescent microscopy images by a commercial software.
We demonstrate that this approach provides new biological insight into the mech-
anisms of peroxisome regulation.
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Mitochondria

Nucleus
Endoplasmic 
reticulum
Endosomes

Peroxisomes

Fig. 1. Illustration of organelles in
a eukaryotic cell.

Fig. 2. The biochemical model that governs
peroxisome count in a cell. Peroxisomes are cre-
ated de novo at rate kd or via fission at a rate
kf , and degraded at rate γ.

2 Background

2.1 Organelle Dynamics via Fluorescence Microscopy

Organelle dynamics is defined as the process that regulates organelle shape and
numbers. Studies of organelle dynamics commonly use fluorescent probes and
microscopy (abbreviated to fluorescence microscopy). The technology induces
cells to produce a fluorescent protein fusion that is targeted to the organelle.
Using fluorescent probes as markers, organelle structures are identified [2] and
used to count organelle numbers [14].

Peroxisomes are particularly well suited for studies of dynamics, as their
round punctate structure (Fig. 1) facilitates counting from microscopy images
[3]. In addition, peroxisomes do not undergo fusion. The biochemical model that
governs peroxisome counts in a cell is simplified to only three stochastic pro-
cesses, each with its own rate parameter, as in Fig. 2. For example, an increase
in peroxisome counts implies that the joint rate of processes that control bio-
genesis (i.e., de novo generation and fission) exceeded the rate of degradation.
This sheds light into their involvement in cellular events that require changes in
peroxisome numbers, such as during cell growth in human cells or in response
to different nutrient conditions in yeast [10,14].

For accurate rate inference, important data considerations include the avail-
ability of accurate counts, multiple replicates, and time lapse acquisition. How-
ever, live peroxisome imaging is commonly performed over small periods of time
(a few minutes) [15], and high-throughput peroxisome imaging has been limited
to the use of fixed cells [16]. Moreover, high magnification objectives (60X or
higher) used to resolve peroxisomes (0.5 − 1μ m in size) [14] limit imaging to
individual cells. This manuscript addresses these challenges by developing a ded-
icated experimental approach that allows imaging of 100 time points per cell
and up to 20 replicate cells per experiment over a time period of over 8 h. This
in turn enables the accurate inference of the rates.
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2.2 Modeling and Inference of Organelle Dynamics

Modeling. Mukherji and O’Shea have proposed a stochastic model of organelle
dynamics in yeast [10], which we review in this section in the case of peroxisomes.
We denote by x (t) ∈ N the count of peroxisomes in a cell at time t ∈ R

+. Given
the joint effect of the three stochastic processes, the probability p (x, t) that the
count equals x at time t is governed by
dp (x, t)

dt
= [kd + kf (x − 1)] p (x − 1, t)+[γ (x + 1)] p (x + 1, t)−[kd + (kf + γ) x] p (x, t)

(1)
where p (x0, 0) = 1, and p (x �= x0, 0) = 0. The equation describes the Markov
jump process [17], and is used in many areas of research, e.g. to describe a birth-
death immigration process [17] in ecological systems [18]. The rate parameter
kd is in units of time−1, while kf and γ are in units of peroxisome−1time−1. In
Eq. (1) kd, kf and γ are unknown and must be inferred from the data.

The data D =
⋃T

t=1 (tt, yt) are time points t1 < t2 < · · · < tT and organelle
counts y1, . . . , yT observed in a same cell. In presence of measurement error,
the observed counts differ from the true (hidden) counts xt governed by Eq. (1).
The Normally distributed measurement error is frequently assumed p (yt |xt ) =
N (

xt, σ
2
)

[12,19].

Inference. To infer the rate parameters in Eq. (1), traditional inference meth-
ods, such as those based on a particle filter [20], simulate many different trajec-
tories from the equation via an exact simulation method, e.g. the Gillespie algo-
rithm [21]. Unfortunately, these methods are computationally expensive. In this
manuscript we propose to reformulate Eq. (1) in terms of an equivalent stochas-
tic differential equation, which leads to Bayesian formulation and to inference
with parallelization. It reduces the computational by a large fraction (∼30), thus
enabling rapid feedback for follow-up biological investigations.

2.3 Bayesian Rate Inference in Unreplicated Systems

Inference of stochastic biochemical systems is challenging because the likelihood
p (D |θ ) is usually unavailable in closed form. Although frequentist modeling and
inference has been proposed [22–24], it is less suited to experiments with sparse
time-course measurements where the inferred rates are subject to relatively high
uncertainty. Frequentist inference is therefore rarely used.

To our knowledge, the Bayesian formulation of Eq. (1) has never been consid-
ered. However, similar equations modeling other stochastic biochemical systems
have received a great deal of attention in, e.g. [19,25]. We briefly overview the
approaches developed in these other contexts, as they form the basis of the
proposed method for systems with multiple replicates.

Modeling. The Bayesian formulation of Eq. (1) requires the specification of a
joint prior distribution of θ = (kd, kf , γ, σ), and the posterior

p (θ |D ) ∝ p (D |θ ) p (θ) (2)
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Assuming a memoryless process where the increments xt+1 − xt are statistically
independent, and an error model where the measured count only depends on the
hidden count, Eq. (2) becomes [19]

p (θ |D ) ∝
∫ T∏

t=1

p (yt |xt, θ ) p (xt |xt−1, θ ) p (θ) dxt (3)

The integration is over all the possible hidden states at each time point.

Inference. Since the likelihood is unavailable in closed form, Bayesian infer-
ence is performed by numerically sampling from the posterior distribution. Most
approaches are based on a Metropolis Hastings (MH) algorithm, but vary in
methods that approximate the likelihood and update the parameters. For exam-
ple, the exact stochastic process approximates the likelihood and an update
scheme in [26]. A similar approach with the moment closure approximation is in
[27]. However, these methods are inapplicable in presence of measurement error.

In presence of measurement error, the posterior distribution is most often
sampled using a particle filter [20], which combines a Markov chain Monte Carlo
(MCMC) sampler with a sequential Monte Carlo. It relies on the sequential
propagation and reweighing of N computational particles p1≤i≤N . Each particle
has a weight pi (w) and a value pi (x) along the time points. The particle filter
method propagates and reweighs the particles along the time course, such that
the likelihood at time t in Eq. (3) is the product of particle weight sums over all
time points.

Several variants of particle filter aim to improve its computational efficiency.
For example, the Particle Marginal Metropolis Hastings (PMMH) [28,29] simul-
taneously targets both the parameters and the hidden counts, i.e. p (x, θ |D ).
This manuscript takes an approach similar to PMMH. However, since we are
not interested in inference for the hidden counts, we target p (θ |D ).

Particle filter is computationally expensive, particularly when used for com-
plex equations such as Eq. (1). As such, they are often parallelized and run
on distributed memory systems [30] (although, to the best of our knowledge,
never for stochastic biochemical models). Most implementations split the com-
putational particles between multiple processes, and iteratively propagate and
reweigh the particles locally within each process [31]. Particles (or other informa-
tion) is exchanged between the processes to avoid infrequent or local weight nor-
malization. Different such schemes have been proposed, e.g. distributed resam-
pling with non-proportional allocation (DRNA) [32] or local selection (LS) [33].

2.4 Bayesian Rate Inference in Replicated Systems

To the best of our knowledge, replicated experiments have not been previously
used to infer rate parameters of organelle dynamics. Here we briefly discuss
related methods proposed in the context of other stochastic biochemical systems.
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Modeling. In experiments with replicate time courses, the data are a collection
of time points and organelle counts across k = 1, . . . , K cells. In the notation
of this manuscript, D =

⋃K
k=1 Dk, where Dk =

⋃Tk

t=1

(
tkt , yk

t

)
. The time steps

tkt+1 − tkt can vary between the cells.
Zechner et al. model transcriptional and post-transcriptional processes in het-

erogeneous cell populations, where rates vary between cells [13,34,35]. Assuming
that the replicate cells are governed by the same rates (homogeneous rates) and
are statistically independent, the posterior in Eq. (3) becomes [13]:

p (θ |D ) ∝
K∏

k=1

∫ Tk∏

t=1

p
(
yk

t

∣
∣xk

t , θ
)
p

(
xk

t

∣
∣xk

t−1, θ
)
p (θ) dxk

t (4)

Since no information about rate values is known a priori, p (θ) is a weakly infor-
mative prior (e.g. a Lognormal distribution). Unfortunately, the method cannot
handle situations where numbers of data points or measurement time steps dif-
fer between the cells. Therefore, this approach is unsuitable for inference of rate
parameters of peroxisome dynamics from microscopy data. The likelihood of
Eq. (4) can also be extended [13,36] to a situations where the rates vary between
cells (i.e., are heterogeneous) and statistically independent. In such case, the vari-
ation of rates between cells (i.e. the intrinsic biological variation) is described in
terms of distribution p (θ|α) with hyperparameters α. Expressing the posterior
of Eq. (4) in terms of α, we obtain:

p (α |D ) ∝
∫ K∏

k=1

∫ Tk∏

t=1

p
(
yk

t

∣
∣xk

t , θ
)
p

(
xk

t

∣
∣xk

t−1, θ
)
p (θ|α) p (α) dxk

t dθ (5)

The rates are often assumed to follow a gamma distribution [36] which ensures
their positivity and can well approximate the Normal distribution.

Inference. Zechner et al. [13] aimed to reconstruct promoter activation and
transcription. Therefore, they were interested in the distribution over hidden
counts

(
x1
1, · · · , x1

T · · · , xK
1 , · · · , xK

T

)
. They jointly inferred the hidden counts

and the rate parameters by sampling from p (x, θ |D ). Since targeting this distri-
bution via Metropolis Hastings was intractable, the authors introduced a recur-
sive Bayesian procedure where (ignoring cell to cell variations for the rates) the
posterior distribution at time tt was computed from the posterior distribution
at time tt−1

p
(
x1
1:t, · · · , xK

1:t, θ
∣
∣y1

1:t, · · · , yK
1:t

) ∝[∏K
k=1 p

(
yk

t

∣
∣xk

t , θ
)
p

(
xk

t

∣
∣xk

t−1, θ
)]

p
(
x1
1:t−1, · · · , xK

1:t−1, θ
∣
∣y1

1:t−1, · · · , yK
1:t−1

)

until all the T time points of the K cell replicates have been used.
In contrast, studies of peroxisome dynamics are not interested in the hidden

counts, and only need to sample p (θ |D ) or p (α |D ). This reduced dimension-
ality allows us to directly sample from Eqs. (4) or (5), without resorting to the
complications of Eq. (6).
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3 Methods

3.1 Expressing the Biochemical Model of Peroxisome Dynamics as
a Stochastic Differential Equation

We propose to reformulate the model in Eq. (1) in terms of an equivalent stochas-
tic differential equation (SDE) [37]

dx (t) = [kd + (kf − γ) x (t)] dt + [kd + (kf + γ) x (t)] dW (t) with x (0) = x0

(6)
were W (t) is Brownian motion, and x (t) ∈ R is the continuous approximation
of the discrete peroxisome count x (t) ∈ N. Obtained by the diffusion approxi-
mation, this equation has the same solution as Eq. (1) [38], but is less expensive
to solve.

We solve this equation with the Euler-Maruyama method [39]. The solution
advances with time step Δt = tt+1 − tt following:

xt+1 = [kd + (kf − γ) xt] Δt + [kd + (kf + γ) xt]
√

ΔtZ with Z ∼ N (0, 1) (7)

to obtain xt+1 from xt. In the following, the numerical solution of the SDE from
tt to tt+1 is abbreviated xt+1 ∼ ptt→tt+1 (xt+1 |xt, θ ). Since the solution is not
deterministic, solving the equation between two time step amounts to sampling
from the transition density between the steps.

Our experience indicates limited rate variation between the cells. We there-
fore first assume that all replicate cells in an experiment are homogeneous, i.e.
have the same peroxisome regulation rates. We further assume no prior informa-
tion about the rates, and specify a flat, uninformative prior p (θ) = 1. In a second
time, we relax the homogeneous rate assumption by considering heterogenous
rates, this time assuming a flat prior for the hyperparameters p (α) = 1.

In fluorescence microscopy a variety of experimental factors, e.g. the luminos-
ity of the fluorescent tag or the topology of each cell, impact the measurement
error. We express this with a Normal measurement error, i.e.:

pε

(
yk

t

∣
∣xk

t , θ
)

=
1√

2πσk
e

− 1
2(σk)2

(yk
t − xk

t )
2

(8)

where the standard deviation σk depends on the cell replicate k, but is constant
in time.

Considering both the SDE model and the measurement error, and marginal-
izing the hidden states, the posterior analogous to Eq. (4) becomes:

p (θ |D ) ∝
K∏

k=1

∫ Tk∏

t=1

[
pε

(
yk

t

∣
∣xk

t , θ
)
ptk

t →tk
t+1

(
xk

t

∣
∣xk

t−1, θ
)]

dxk
t (9)

while in the case of heterogeneous rates, the posterior analogous to Eq. (5) is:

p (α |D ) ∝
∫ K∏

k=1

∫ Tk∏

t=1

p (θ|α)
[
pε

(
yk

t

∣
∣xk

t , θ
)
ptk

t →tk
t+1

(
xk

t

∣
∣xk

t−1, θ
)]

dxk
t dθ

(10)
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Algorithm 1. Metropolis Hastings Sampler
Inputs: data D
Params: # of MCMC samples S

# of burn in samples Sb

initial values θ0

random walk parameter σMH

Functions: Algorithm 2
Output: samples

{
θSb , · · · , θS−1

}

1: procedure MCMCs(D)
2: for s in 0 : S − 1 do
3: Process Proc0 does:
4: � Generate proposal parameter
5: θ∗ ∼ Lognormal

(
log θs, σ2

MH

)

6: All processes of Pk collectively do:
7: θ∗,k ← θ∗

8: � Calculate replicate log-likelihood
9: LogLikk

(
θ∗,k

) ← PPF
(
θ∗,k, Dk, Pk

)

10: Process Proc0 does:
11: � Sum all replicate log-likelihoods
12: LogLik (θ∗) ← ∑K

k=1 LogLikk

(
θ∗,k

)

13: � Calculate MH acceptance ratio
14: LogA ← LogLik (θ∗) − LogLik (θs)

15: LogA ← LogA + log
∏

l θ∗
l∏

l θs
l

16: � Accept/reject proposal
17: r ← min(0, LogA)
18: u ∼ U (0, 1)
19: if log u < r then
20: θs+1 ← θ∗

21: else
22: θs+1 ← θs

3.2 Parallel Inference for Replicated Experiments
with Homogeneous Rates

MCMC Sampling. The reformulation of the model in Eq. (1) in terms
of a SDE in Eq. (6) reduces the computational cost of parameter estima-
tion. Specifically, we propose to sample the posterior distribution p (θ |D ) =
p

(
kd, kf , γ, σ1, · · · , σK |D )

in Eq. (9) with the Metropolis Hastings algorithm.
The algorithm requires us to calculate the log likelihood LogLikk =

log [p (θ |Dk )] = log [p (Dk |θ )] for each cell replicate k, and the overall log like-
lihood LogLik =

∑K
k=1 LogLikk. The advantage of the algorithm is its abil-

ity to carry out the inference in a distributed memory multicore environment,
and in a parallel manner. While traditional implementations of particle filter
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approximate each LogLikk in a single core, here we propose to simultaneously
calculate LogLikk using multiple computing cores or CPUs (called processes
in what follows). The parallelization along each replicate is fairly natural and
straightforward for the calculation of the overall log likelihood. The parallel cal-
culation of each replicate log likelihood with a particle filter is, however, more
involved due to the need to exchange particle between processes. This will reduce
the computation time of each MCMC step, and in turn drastically reduce the
overall computation time.

The proposed sampling is a modification of a standard Metropolis Hastings
algorithm, as detailed in Algorithm 1. Global operations involving all cell repli-
cates, such as the generation/acceptance of MH samples (lines 5 and 15), or
the sum of LogLikk (line 12) are standard, and performed by the master process
Proc0. A Lognormal proposal distribution (lines 5 and 15) enforces the positivity
condition for θ. The magnitude of each rate step (line 5) is proportional to the
value of the rate.

Parallel Particle Filter. The calculation of LogLikk with parallel particle
filter (Algorithm 2) is the core of the proposed algorithm. It is an instance of
distributed resampling with non-proportional allocation (DRNA), with global
reweighing at each step [32,40,41]. Unlike the existing algorithms, we distribute
the particles of a LogLikk between multiple processes, and allow each process
to resample its own particles. To facilitate mixing, a fraction of particles are
exchanged between a process and its neighbors. We describe this in more detail
below.

The algorithm partitions all the available processes (except the master Proc0)
into K groups. Every group Pk =

{
Prock

0 ,Prock
1 , · · · ,Prock

Nproc,k

}
is dedicated

to calculating LogLikk. Prock
0 is the master process used for global group oper-

ations, while the rest Nproc,k processes are slave processes.
Each slave process Prock

j stores N particles of the filter related to cell repli-
cate k, denoted by pj,k

i , 1 ≤ i ≤ N . Each particle has a weight, which character-
izes the plausibility of its representation of the hidden state. The particle values
pj,k

i (x) are initialized from a Poisson distribution centered around the observed
organelle counts at t1, and the particle weights pj,k

i (w) from a Uniform distri-
bution (lines 5–6). At each observed time point t the particles are propagated
to t + 1 according to the Euler scheme (line 11 and Eq. (7)). This is the most
computationally expensive part, due to the large number of particles considered.

After the update, each particle is re-weighted following the Normal error
model (line 13 and Eq. (8)). Finally, the algorithm sums all the particle weights
into the quantity SW (line 14), and increments the LogLikk of cell k (line 18).
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Algorithm 2. Parallel Particle Filter
Inputs: parameters θ

data Dk and processes Pk for cell k
Params: # of particles per process N
Output: LogLikk of cell k

1: procedure PPF(θ, Dk, Pk)

2: Each Prock
j 1 ≤ j < Nproc,k does:

3: � Initialize particle values and weights
4: for i in 1 to N do
5: pj,k

i (x) ∼ Poiss
(
yk
1

)

6: pj,k
i (w) ← 1

N×Nproc,k

LogLikk ← 0

7: for t in 0 to T k − 1 do
8: Each Prock

j 1 ≤ j < Nproc,k does:

9: for i in 1 to N do
10: � Propagate particles, Eq. (7)
11: pj,k

i (x) ∼ ptt→tt+1(·|pj,k
i (x) , θ)

12: � Calculate particle weights, Eq. (8)

13: pj,k
i (w) ← pε

(
yk

t+1|pj,k
i (x) , θ

)

14: Send
∑

i p
j,k
i (w) to Prock

0

15: Process Prock
0 does:

16: � Increment LogLikk

17: SW ← ∑Nproc,k−1

j=1

∑
i p

j,k
i (w)

18: LogLikk ← LogLikk + log
(

SW
N

)

19: Each Prock
j 1 ≤ j < Nproc,k does:

20: � Exchange particles between processes

21:
{
pj,k

i

}N

i=N/2+1
↔

{
pRightj,k,k

i

}N/2

i=1

22:
{
pj,k

i

}N/2

i=1
↔

{
pLeftj,k,k

i

}N

i=N/2+1

23: � Normalize weights for each process
24: for i in 1 to N do

25: pj,k
i (w) ← p

j,k
i (w)

∑
i pi(w)

26: � Resample particles by weight
27: Sample pj,k

i ∼ pj,k
i (w) N times

28: return LogLikk
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Fig. 3. Communication between Prock
j and its

neighbors, at one time step, for cell replicate
k. Prock

j sends the sum of particle weights
∑

i p
j,k
i (w) to the master node. Half of the parti-

cles are then exchanged between the neighboring
slave processes.

To prevent the loss of
accuracy, the slave processes
exchange particles in a circular
manner, as illustrated in Fig. 3
(lines 21–22). For each process
j of cell replicate k, N/2 par-
ticles are sent to the process
Prock

j−1 to its left, while the
remaining half are sent to the
process Prock

j+1 to its right. The
first process Prock

1 is viewed
as the neighbor of the last
process Prock

Nproc,k
. This ring

topology minimizes the commu-
nication between the processes,
and maximizes the efficiency of parallelization. Finally, after within-process
weight normalization (line 25), the particles are sampled according to their
weights using stochastic universal sampling [42] (line 27). This ensures that only
highly plausible particles are retained for the next time step.

Since the calculation of each replicate likelihood is independent of the others,
replicates with different number of data points and time discretization are triv-
ially handled. If one cell replicate is acquired in a longer time course than the
rest, it receives more processes to minimize the idle time of the other replicates
waiting for the calculation.

Model-Based Conclusions. The inferred distribution of the rates are obtained
from the output samples (θSb , · · · , θSb) of Algorithm 1. Since the samples are
highly correlated, they are thinned by a factor (determined from their autocor-
relation spectrum) before estimating the posterior distributions.

The units of kf and γ differ from the units of kd, and the values of the rates
are not comparable directly. On the other hand, the ratios kd : kfN : γN (where
N is the average number of peroxisomes per cell) are the relative prevalence of
each reaction in numbers of reaction per unit time. Therefore, to facilitate the
interpretation, we report the results in terms of kd, kfN and γN in what follows.

3.3 Inference of Cell to Cell Rate Variations

The method presented in the previous section can readily be extended to
account for cell to cell variations in the rates. We assume that kd, kf and γ
each follow a Gamma distribution with its own shape and rate parameters:
i.e. kd ∼ Gamma (αkd

, βkd
) , kf ∼ Gamma

(
αkf

, βkf

)
and γ ∼ Gamma (αγ , βγ).

Instead of directly sampling the shape and scale of the Gamma distributions,
we sample their mean μ and standard deviation σ. This approach is equivalent
(since e.g. for kd, αkd

= μ2
kd

/σ2
kd

and βkd
= σ2

kd
/μkd

) but it allows a better inter-
pretation of the inferred parameters, and reduces sampling variation. We propose
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to sample α =
(
μkd

, σkd
, μkf

, σkf
, μγ , σγ , σ1, · · · , σK

)
from the posterior distri-

bution p (α |D ) in Eq. (10) with the Metropolis Hastings algorithm detailed in
the previous section. We approximate the integral over all θ parameters by using
a single importance sample θk ∼ p (θ|α) (which provides an unbiased estimator
of the integral) so that:

p (α |D ) ∝∼
K∏

k=1

∫ ∏Tk

t=1

[
pε

(
yk

t

∣
∣xk

t , θk
)
ptk

t →tk
t+1

(
xk

t

∣
∣xk

t−1, θ
k
)]

dxk
t (11)

We use the exact same particle filer detailed in Algorithm 2 while the difference
in the MCMC sampler resides in that we sample α instead of θ and need to
integrate the likelihood over θ. As such, in Algorithm 1, θ∗, θs, θs+1 are replaced
by α∗, αs, αs+1 respectively while line 7 (the generation of rates from hyperpa-
rameters) becomes θ∗,k ∼ p (θ|α).

3.4 Implementation

We implemented the procedure in C++ for speed, and parallelized it using the
MPI-2.2 (Message Passing Interface) [43] libraries. The source code and docu-
mentation is available at github.com/cyrilgalitzine/Organelle.

3.5 Imaging and Counting Peroxisomes by Confocal Microscopy

First, peroxisomes in human liver cells (HepG2) were labeled by expression of
the fluorescent protein, EGFP, tagged with the peroxisome targeting sequence,
PTS1, as in [44]. Transfection conditions were optimized to avoid enlarged aber-
rant peroxisomes from overexpression, as well as reduce background cytosolic
fluorescence while maintaining peroxisome-specific fluorescent signals. At 24 h
following transfection, live cells were imaged with a 60X objective using a Nikon
Ti-E confocal microscope. Z-stacks were acquired with 0.2µm steps for 22µm
at 50 ms exposure per step to limit laser exposure to <10 s per cell. Image acqui-
sition was automated for sequential imaging of individual cells (Fig. 4). Over-
all, this workflow maintained instrument use to a reasonable timeframe, and
improved cell viability by avoiding continuous laser exposure. It maximized data
collection at time intervals that allow detection of changes in peroxisome counts
without oversampling. Using this instrumentation, we could image 20 cells with
6 min data point intervals for a total of 10 h.

To count peroxisomes, images were processed using the Nikon NIS-Elements
AR v5.0. Image Z-stacks were deconvolved [45,46], and individual peroxisomes
were detected semi-automatically using the 3D Spot Detection feature (Fig. 5).
Organelle abundance was quantified as the number of objects detected per cell
and per time point.

https://github.com/cyrilgalitzine/Organelle/
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Fig. 4. Schematic representation of peroxisome imaging and counting in live human
cells.

Fig. 5. A: peroxisome fluorescence signal from a cell. B: Output of the 3D spot detection
algorithm for the same cell. Each colored sphere indicates a peroxisome. C, D: same as
A, B, for another cell with fewer peroxisomes. (Color figure online)

4 Datasets

4.1 Experimental Datasets

We acquired a total of three experimental datasets, called Day 1, Day 2, and
Day 3. The final datasets consisted of 13 replicate cells for Day 1, 10 replicate
cells for Day 2, and 20 replicate cells for Day 3. The count results for two of
these experiments are shown in Fig. 6. Between-cell and between-day variability
was observed for both the average number of peroxisomes in a cell and the slope
of the trace throughout the experiments. The number of cells per experiment
and time points per cell varied as some cells moved out of focus or died before
completion of the experiment. The cell heterogeneity and incomplete data were
important considerations of the rate parameter inference.

4.2 Simulated Datasets

To evaluate the proposed approach in the case of homogeneous rates we simu-
lated three additional datasets SIM A, SIM B and SIM C. The datasets were
simulated with the Gillespie algorithm, with K = 14 and also with K = 1 cell
replicates. Each cell replicate was initialized with a different count yk

0 (taken
to be identical to the experimental counts of the first 14 cells on Day 3), but
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Fig. 6. Peroxisome counts in the time course experiments. Colors indicate cell repli-
cates. (Color figure online)

simulated with the same duration T k = 33936 s, frequency (336 s−1) and stan-
dard deviation of the measurement error σ. At the inference stage, the standard
deviation of the measurement error σk were inferred separately for each replicate.

The values of the rate parameters were inspired from those the experimental
datasets, and reported in Table 1. In SIM A and SIM B the values of kd were low,
corresponding to a realistic situation where the de novo process is less prevalent
than the fission or degradation, making it hard to detect. In SIM C kd was
relatively high, and the three reactions occurred relatively often. The values of
kf and γ were identical in SIM A, but differed slightly in SIM B and SIM C. The
datasets were used to evaluate the ability of the proposed approach to estimate
these different parameter configurations.

Table 1. Experimental design and parameter estimation in simulated datasets. True
parameter values in each simulation are in bold. Table entries report parameter esti-
mates, standard deviation of the posterior distribution (in parentheses), and the %
error. kd is expressed in second−1, while kf and γ in peroxisome−1second−1.

SIM Dataset kd × 104 kf × 105 γ × 105 σ1

A True 7.75 4 4 6

14 cells 29% 10 (7.65) 8% 4.32 (0.85) 12% 4.47 (0.85) 0.7% 5.95 (0.79)

1 cell 1700% 140 (148) 4% 4.18 (3.05) 80% 7.17 (3.96) −5% 5.68 (0.91)

B True 2.75 3 4 7.5

14 cells 224% 8.92 (5.50) −9% 2.71 (0.93) −1% 4.90 (0.91) 4% 7.8 (0.92)

1 cell 758% 23.60 (26.5) 8% 3.01 (3.00) 13% 5.65 (3.20) 3% 7.70 (0.87)

C True 50 1 5 6

14 cells −5% 47.2 (1.14) 30% 1.29 (0.63) −4% 3.30 (0.58)% −4% 5.77 (0.92)

1 cell 8% 53.80 (51.6) 198% 2.98 (2.27) 73% 5.19 (2.34) −10% 5.44 (0.71)
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5 Results

5.1 Parallel Inference Shortened Computation Time

We inferred the rates in the experimental and the simulated datasets using 4800
particles and σMH = 0.04, resulting in a MH acceptance rate between 0.2 and 0.3.
We set Nproc,k = 2, and thinned the original 500,000 MCMC sampling iterations
to every 500. Each iteration lasted on average 0.17 s (wall clock time) for Day
1 (13 replicates on 40 CPUs), 0.14 s for Day 2 (11 replicates on 34 CPUs) and
0.2 s for Day 3 (20 replicates on 61 CPUs). The overall inference took around 1
day.

In contrast, the existing modeling and inference procedures required substan-
tially longer computation time. For example, the use of the original stochastic
model in Eq. (1) with Gillespie algorithm increased the time per iteration by
about 30% with identical inference results. In the case of Day 1, this results in
each iteration taking 0.2 seconds.

Similarly, the use of the SDE model in Eq. (6) with serial inference per cell
increased the time per iteration by a factor of K (Nproc,k − 1) (the parallel over-
head is negligible as compared to the particle movement). In the case of Day
1, representative iterations lasted 195 s, estimating the overall inference time of
270 days. Therefore, the biological insights from multiple replicates were out of
reach without the proposed parallel procedure.

5.2 The Approach Accurately Inferred the Rates

Figure 7 shows the posterior distributions, and Table 1 summarizes the properties
of the inferred rates in the simulated datasets. Since the inferred σk were similar
across replicates, the table only reports the value for the first replicate σ1. The
proposed approach accurately inferred the rates in experiments with 14 cell
replicates. SIM A and SIM B with low kd challenged the estimation of this rate,
as evidenced by its skewed and variable posterior distribution. A larger de novo
rate in SIM C led to more accurate estimates. Table 1 shows that the inferred
posterior distributions of Nkf and Nγ had little variance. Their relatively large
breadth in Fig. 7 was due to the multiplication by N . We obtained identical
inference results with the SDE model of Eq. (6) as with the Gillespie algorithm
applied to Eq. (1) as shown in the case of SIM B (1 replicate) in Fig. 7. This,
combined with the fact that simulation results were generated using Eq. (1),
demonstrates that the SDE approximation reduced computational cost without
compromising the accuracy of the results.

5.3 Replicate Cells Improved Inference of the Rates

Figure 7 compares the inferred posterior distributions with one versus 14 cell
replicates in the simulated datasets, and Table 1 summarizes the results. Infer-
ence from unreplicated experiments had high uncertainty in all the experiments,
and led to broader posterior distributions. In particular, rates associated with
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Fig. 7. Posterior distributions of the rates in the simulated datasets. To make the rates
comparable, kf and γ are multiplied by the average peroxisome count N in each dataset.
Vertical lines are the true parameter values. A dotted line denotes rate distributions
obtained with Eq. (1) and the Gillespie algorithm instead of the SDE (solid line)

Table 2. Results for the experimental datasets with the homogeneous rate model.
The reports parameter estimates, standard deviation of the posterior distribution (in
parentheses). kd is expressed in second−1 and kf and γ in peroxisome−1second−1.

Dataset kd × 104 kf × 105 γ × 105

Day 1 2.51 (3.66) 10.0 (1.36) 10.5 (1.38)

Day 2 6.45 (5.60) 5.57 (1.12) 6.02 (1.11)

Day 3 1.05 (1.72) 1.19 (0.37) 1.43 (0.32)

rare events (such as de novo in SIM A and SIM B) could not be accurately
estimated with only one replicate, and had an ∼10-fold error for the mean. The
uncertainty diminished in experiments with 14 cell replicates, and the standard
deviation of the posterior distributions of kf and γ was reduced by a factor of 3
to 4. This result emphasized the importance of incorporating replicate cells into
the rate inference procedure.
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Fig. 8. As in Fig. 7, for the experimental datasets.

5.4 Inference from Replicate Cells Revealed Maintenance of
Peroxisome Counts by Prominent Fission, Compared to Low
de novo generation rates

Figure 8 compares the posterior distribution for the three experimental datasets,
and Table 2 summarizes the results. We consistently observed similar values of
rate parameters of peroxisomes degradation and fission. Moreover, we consis-
tently observed a 5 to 100 times smaller value of the rate of de novo generation.
The results indicate that de novo peroxisome generation in mammalian cells is
a relatively rare event, occurring approximately 8 to 45 times per day.

5.5 Rates Varied Little Between Cells

We obtained in Sect. 5.4 fairly narrow inferred distribution for the rates which
allowed us to make important biological conclusions. We would, however, like to
distinguish how much of the variance of inferred rates is caused by possible rate
heterogeneity between cells and how much is caused by statistical uncertainty
(i.e. a too low number of replicates or data points). This is achieved by using
the heterogeneous rate model which models rate cell to cell variations. Figure 9
shows the posterior hyperparameter distributions obtained with the heteroge-
neous rate model, and Table 3 summarizes the results. On average, for kf and
γ, the intrinsic rate standard deviation was about 5–10%, indicating relatively
small intrinsic biological variations as compared to the rate values. The intrinsic
variance of rates kf and γ, i.e. σkf

and σγ , reported in Table 3 were less than
30% of the variance of the rate mean (in parentheses next to the mean value).
This indicates that most of the variance obtained with the homogeneous rate
model reported in Table 2 arised from statistical uncertainty (i.e. a too low num-
ber of replicate) instead of biological variation. In contrast, for days 1 and 3, σkd

was relatively large (about twice the rate mean standard deviation). This shows
that, for some conditions, the uncertainty associated with cell to cell variation
was more important than the statistical uncertainty in the de novo rate value.
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Fig. 9. As in Fig. 8, with the heterogeneous rate model. The rate standard deviations
for kf and γ (dotted lines) are multiplied by 10 to plot their distributions on the same
plots as the rate means.

Table 3. Results for the experimental datasets for the heterogeneous rate model.
The reports parameter estimates, standard deviation of the posterior distribution (in
parentheses).

Dataset μkd × 104 σkd × 104 μkf × 105 σkf × 105 μγ × 105 σγ × 105

Day 1 7.6 (4.8) 8.9 (8.9) 8.99 (1.4) 0.39 (0.2) 9.75 (1.4) 0.49 (0.3)

Day 2 11.3 (10.5) 12.2 (10.9) 4.99 (1.03) 0.39 (0.16) 5.61 (1.06) 0.38 (0.18)

Day 3 4.6 (3.2) 3.5 (3.5) 1.21 (0.38) 0.12 (0.07) 1.55 (0.38) 0.096 (0.08)

6 Discussion

In contrast to other organelles, peroxisome are constantly recycled in healthy
cell populations, and degraded to remove old or damaged peroxisomes [47,48].
Defining the predominant process of peroxisome production is a current topic
of debate [49–52]. The stochastic model proposed by Mukherji and O’Shea was
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tested in yeast cells [10]. The authors observed a switch from the predominance
of de novo generation to fission, occurring under conditions that increase perox-
isome numbers. While yeast cells only have 5–20 peroxisomes per cell, humans
and other mammals need larger number of peroxisomes (100–500). It is there-
fore possible that mammals evolved to use fission as a primary mechanism for
peroxisome proliferation [14,47].

Here, we used experimental data to directly infer the rates governing peroxi-
some abundance. While the inferred rates for fission and degradation were simi-
lar, de novo generation was less frequent. The infrequent de novo generation is in
line with previous studies estimating low numbers (30) of new peroxisomes per
day [50]. The inference of peroxisome rates helps us reconcile previous conflict-
ing evidence. It leads to a new model, where peroxisome population undergoes
recycling via two opposing processes, fission and degradation, in addition to a
basal de novo generation rate.

The results indicated that accuracy of rate inference depends on the value of
the rates. In particular, rates associated with rare events, such as the de novo
rate, are difficult to infer. This can be mitigated by imaging more cell replicates,
or by extending the imaging time.

The inferred rates varied between instances of experiments repeated on mul-
tiple days. The variation in the rates across days could be explained as biological
effects of the cell batch analyzed, such as confluency and age, which are known
to affect the mechanisms of peroxisome biogenesis [53].

The cell to cell variation for the rates was limited in the case of the fission
and degradation rates but more pronounced for the de novo rate which further
compounded the uncertainty in its estimation.

The overall rate inference, and the assessment of the uncertainty, may be
improved by analyzing the combined data from all the days. This will require
extending the model to include inter-day variation, and accommodating the extra
computational cost. Since the proposed SDE-based modeling is flexible, and
since the inference algorithm supports parallelization, the proposed approach is
in principle extendable to such situations. However, measurements on more days
will be required to establish a model of inter-day variation.

This proposed inference procedure can also be extended to other organelles.
Imaging tools for other organelles are available and widely used [44]. The mod-
eling and inference procedure can include additional reactions, such as fusion.

Organelle dynamics are subject to alteration and regulation upon extracellu-
lar and intracellular cues. For example, peroxisomes increase in numbers when
cells grow to undergo division. This occurs by either increasing the rate param-
eters of one of the production processes, or by decreasing the rate parameter of
the degradation. The proposed approach can be used to assess this process of cell
adaptation. Therefore, this work serves as a starting point for achieving a sys-
tem view of the biophysical properties, used by the cell to regulate its organelle
content.
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23. Ionides, E.L., Bretó, C., King, A.A.: Proc. Natl. Acad. Sci. 103, 18438 (2006)
24. Wang, Y., et al.: BMC Syst. Biol. 4, 1 (2010)
25. Fuchs, C.: Inference for Diffusion Processes. Springer, Heidelberg (2013). https://

doi.org/10.1007/978-3-642-25969-2
26. Boys, R.J., Wilkinson, D.J., Kirkwood, T.B.L.: Stat. Comput. 18, 125 (2007)
27. Milner, P., Gillespie, C.S., Wilkinson, D.J.: Stat. Comput. 23, 287 (2012)
28. Andrieu, C., Doucet, A., Holenstein, R.: J. R. Stat. Soc. Ser. B 72, 269 (2010)
29. Golightly, A., Wilkinson, D.J.: Interface Focus 1, 807 (2011)
30. Rosén, O., et al.: IEEE CCA Proceedings, p. 440. IEEE (2010)
31. Strid, I.: Technical report, Society for Computational Economics (2006)
32. Bolic, M., Djuric, P.M., Hong, S.: IEEE Trans. Signal Process. 53, 2442 (2005)
33. Mı́guez, J., et al.: EURASIP J. Adv. Signal Process. 2004, 303619 (2004)
34. Koeppl, H., et al.: Int. J. Robust Nonlin. 22, 1103 (2012)
35. Zechner, C., et al.: Proc. Natl. Acad. Sci. 109, 8340 (2012)
36. Bronstein, L., Zechner, C., Koeppl, H.: Methods 85, 22 (2015)

https://doi.org/10.1007/978-3-642-69888-0
https://doi.org/10.1007/978-1-4757-3437-9
https://doi.org/10.1007/978-3-642-25969-2
https://doi.org/10.1007/978-3-642-25969-2


74 C. Galitzine et al.

37. Øksendal, B.: Stochastic Differential Equations. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-14394-6

38. Gillespie, D.T.: J. Chem. Phys. 113, 297 (2000)
39. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations

(SDEs). Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-662-12616-5
40. Mı́guez, J.: Signal Process. 87, 3155 (2007)
41. Zenker, S.: J. Clin. Monit. Comput. 24, 319 (2010)
42. Baker, J.E.: Proceedings of the 2nd International Conference on Genetic Algo-

rithms, p. 14 (1987)
43. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann, Burlington

(1997)
44. Rizzo, M.A., et al.: Cold Spring Harbor Protoc. 4 (2009). http://cshprotocols.

cshlp.org/content/2009/12/pdb.top63.short
45. Vonesch, C., Unser, M.: IEEE Trans. Image Process. 17, 539 (2008)
46. Guerquin-Kern, M., et al.: IEEE Trans. Med. Imaging 30, 1649 (2011)
47. Huybrechts, S.J., et al.: Traffic 10, 1722 (2009)
48. Poole, B., Higashi, T., de Duve, C.: J. Cell Biol. 45, 408 (1970)
49. Fujiki, Y., et al.: Peroxisome biogenesis in mammalian cells. Front Physiol. 5, 307

(2014)
50. Kim, P.K., et al.: J. Cell Biol. 173, 521 (2006)
51. Motley, A.M., Hettema, E.H.: J. Cell Biol. 178, 399 (2007)
52. van der Zand, A., et al.: Cell 149, 397 (2012)
53. Legakis, J.E.: Mol. Biol. Cell 13(12), 4243 (2002)

https://doi.org/10.1007/978-3-642-14394-6
https://doi.org/10.1007/978-3-662-12616-5
http://cshprotocols.cshlp.org/content/2009/12/pdb.top63.short
http://cshprotocols.cshlp.org/content/2009/12/pdb.top63.short


Loss-Function Learning for Digital Tissue
Deconvolution
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Abstract. The gene expression profile of a tissue averages the expres-
sion profiles of all cells in this tissue. Digital tissue deconvolution (DTD)
addresses the following inverse problem: Given the expression profile y
of a tissue, what is the cellular composition c of that tissue? If X is a
matrix whose columns are reference profiles of individual cell types, the
composition c can be computed by minimizing L(y−Xc) for a given loss
function L. Current methods use predefined all-purpose loss functions.
They successfully quantify the dominating cells of a tissue, while often
falling short in detecting small cell populations.

Here we use training data to learn the loss function L along with the
composition c. This allows us to adapt to application-specific requirements
such as focusing on small cell populations or distinguishing phenotypi-
cally similar cell populations. Our method quantifies large cell fractions as
accurately as existing methods and significantly improves the detection of
small cell populations and the distinction of similar cell types.

1 Introduction

Different tissues of the body have different cellular compositions. The composi-
tion of tumor tissue is different from that of normal tissue. Also, when compar-
ing two tumor tissues, their cellular composition can differ greatly. The relatively
small populations of tumor-infiltrating immune cells are of particular importance.
They affect progression of disease [1] and success of treatment [2]. Immune thera-
pies block communication lines between tumor cells and infiltrating immune cells.
Whether they are successful or not depends on the presence, quantity, and molec-
ular sub-type of the infiltrating immune cells [3]. Immune-cell populations are
typically small, and their molecular phenotype can be difficult to observe under
the microscope. Single-cell technologies such as fluorescence-activated cell sort-
ing (FACS; e.g. [4]), cytometry by time-of-flight (CyTOF; e.g. [5]), and single-cell
RNA sequencing [6] assess molecular features on the single-cell level and can thus
be used to determine the cellular tissue composition experimentally.
c© Springer International Publishing AG, part of Springer Nature 2018
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A more cost- and work-efficient alternative to single-cell assays is a combi-
nation of bulk-tissue gene expression profiling with digital tissue deconvolution
(DTD) [7–13]. DTD addresses the following inverse problem: given the bulk gene
expression profile y of a tissue, what is the cellular composition c of that tissue?
Supervised DTD assumes that there is a matrix X whose columns are refer-
ence profiles of individual cell types. The composition c of y can be computed
by minimizing L(y − Xc) for a given loss function L. Competing DTD meth-
ods use different predefined all-purpose loss functions L and different estimation
algorithms to distil c from y and X.

The practical objective of DTD is to estimate c correctly, while the formal
objective of common DTD algorithms is to estimate y correctly. If tissue expres-
sion profiles were exact mixtures of reference profiles, existing methods should
work perfectly. They are not and this causes problems:

(1) Collections of reference profiles can be incomplete. There might
be cells in the tissue that are not represented by the reference profiles. In
that case the global DTD problem is not solvable, and DTD-algorithms will
compensate for the contributions of these cells by increasing the frequencies
of other cell types.

(2) Small cell fractions are hard to quantify. From a practical point of view
this is probably the most important point, and improvements are needed
badly. Immunological cell populations in a tumor are small, but they may
determine the reaction of a tumor to immunotherapy. Therefore, DTD algo-
rithms must use faint signals from small cell populations more effectively.

(3) Some cell types can hardly be distinguished by their expression
profiles. The profile of an epithelial cell differs greatly from that of a lym-
phoid cell. For two immunological sub-entities of CD8+ T cells the differ-
ences are more subtle. The more similar two cell types are, the more similar
are their expression profiles, and the more difficult is their distinction.

In summary, different applications need different approaches. One way to
adapt the estimation of c is to adapt the loss function L. If the focus of an
application is on a predefined set of cell types, genes that are informative to
distinguish exactly these cells should dominate L. This is even more important
if the focus is on small cell populations, the faint signals of which must not
be suppressed. Unfortunately, it is not clear a priori which genes to ignore and
which to focus on.

2 Methods

2.1 Notations

Let X ∈ R
p×q be a matrix with cellular reference profiles X·,j in its columns,

where the dot stands for all row indices. Xij is the reference expression value of
gene i in cells of type j, p the number of genes, and q the number of cell types
in X, respectively. We further introduce a matrix Y ∈ R

p×n with bulk profiles
of n cell mixtures Y·,k in its columns and a matrix C ∈ R

q×n with the cellular
compositions of the mixtures C·,k as columns.



Loss-Function Learning for Digital Tissue Deconvolution 77

2.2 Loss-Function Learning

Following the established linear DTD algorithms, we approximate the mixture
Y·,k by a linear combination of reference profiles (the columns of X) with C.,k

as weights and estimate the composition of the k-th mixture C·,k by minimizing

Lg(Y·,k − XC·,k), (1)

where
Lg = ||diag(g)(Y·,k − XC·,k)||22. (2)

In contrast to standard DTD algorithms, which determine g by prior knowledge
or separate statistical analysis, we will learn g directly from data. To this end we
assume that we have a training set of mixtures Y·,k from a specific application
context with known cellular proportions C·,k that sum to one. The entries of g
are the gene weights that define the loss function. We want to learn g from the
training data such that minimizing Lg(y −Xc) with respect to c yields accurate
quantifications of cell populations for future samples with similar characteristics
as those used for training.

Our method has two nested objective functions: An outer function L(g) and
an inner function Lg, which is here given by Eq. (2). L evaluates discrepancies
between the estimated and the true cellular frequencies of cell types across sam-
ples by Pearson correlation:

L(g) = −
q∑

j=1

cor(Cj,·, Ĉj,·(g)) subject to gi ≥ 0 and ||g||2 = 1, (3)

where the Ĉj,·(g) are the estimates of Cj,· given g. To evaluate L(g) we need to
calculate all Ĉj,·(g), which requires optimizing Lg with respect to all C·,k. Note
that if ĝ is a minimum of L, so is αĝ for α > 0. The constraint ||g||2 = 1 is thus
needed to ensure unique solutions.

Note that
cor(Cj,·, ajĈj,·) = cor(Cj,·, Ĉj,·), (4)

where aj is an arbitrary positive constant. This symmetry is important, since
bulk and reference profiles must be normalized to a common mean across genes
or to a common library size. A normalized reference profile X·,j of a cell type
reflects the true RNA content X̃·,j of these cells only up to an unknown factor:
X·,j = αjX̃·,j . Large cells with a lot of RNA have smaller αj than smaller cells.
The same is true for the bulk profiles Y·,k, where we have Y·,k = βkỸ·,k. The
deconvolution equation

Ỹ·,k = X̃C̃·,k + ε (5)

yields estimates C̃jk that reflect the number of cells of type j. However, Ỹ and
X̃ are not observable in practice and consequently, C̃ is not accessible by DTD
directly. We need to work with X and Y instead.
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Note that C·,k = C̃·,k/
∑q

j=1 C̃jk. Consider now the hypothetical deconvolu-
tion formula with normalized Y but the unobservable true X̃

Y·,k = X̃C ′
·,k + ε. (6)

Here, we assume C ′
·,k = c C·,k for all k, where c is a positive constant. In other

words we assume that if the library size of Y·,k is the same for all samples, we
will roughly need the same number of cells to account for it. This allows us to
replace Ỹ by Y .

The choice of the correlation in the definition of L(g) also allows us to replace
X̃ by X. If we write Eq. (6) using X, we obtain

Y·,k =
q∑

j=1

1
αj

X·,jC ′
jk + ε. (7)

Thus, the estimated cell frequencies are 1
αj

C ′
j,· = c

αj
Cj,·, and can be quite differ-

ent from the training proportions Cj,· in absolute numbers. Nevertheless, they
correlate with Cj,· and will thus generate small losses L(g).

In summary, data normalization makes tissue deconvolution a non-standard
deconvolution problem. The choice of correlation as loss function allows us to
estimate cell frequencies independent of normalization factors.

The minimum of Lg can be calculated analytically, yielding

Ĉ(g) = (XT ΓX)−1XT ΓY (8)

with Γ = diag(g). Inserting this term into L leaves us with a single optimization
problem in g. We minimize L by a gradient-descent algorithm. Let μj and σj be
the mean and standard deviation of Cj,·, respectively. We obtain the gradient

∂L(g)
∂gi

=
q∑

j=1

n∑

k=1

1
σj σ̂j

(
cov(Cj,·, Ĉj,·)

nσ̂2
j

(
Ĉjk − μ̂j

) − 1
n

(Cjk − μj)

)
∂Ĉjk(g)

∂gi
(9)

with

∂Ĉ(g)
∂gi

= (XT ΓX)−1XT δ(i)
(
1 − X(XT ΓX)−1XT Γ

)
Y, (10)

where δ(i) ∈ R
p×p is defined as

δ(i)jk =
{1 if i = j = k,

0 else. (11)

The constraints ||g||2 = 1 and gi ≥ 0 were incorporated by normalizing g by its
length and by restricting the search space to gi ≥ 0.
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3 Results

3.1 DTD of Melanomas

For both training and validation we need expression profiles of cellular mixtures
of known composition. We used expression data of melanomas whose compo-
sition has been experimentally resolved using single-cell RNAseq profiling [14].
These data included 4,645 single-cell profiles from 19 melanomas. The cells were
annotated as T cells (2,068), B cells (515), macrophages (126), endothelial cells
(65), cancer-associated fibroblasts (CAFs) (61), natural killer (NK) cells (52),
and tumor/unclassified (1,758). The first 9 melanomas defined our validation
cohort and the remaining 10 our training data.

First, data were transformed into transcripts per million. Then, for each cell
cluster we sampled 20% of single-cell profiles in the training data, summed them
up, normalized them to a common number of counts, and removed them from
the training data. This yielded reference profiles X·,j . The 1,000 genes with the
highest variance across all reference profiles were used to train models.

The sum of all single-cell profiles of a melanoma gave us bulk profiles. In
addition, we generated a large number of artificial bulk profiles by randomly
sampling single-cell profiles and summing them up. All bulk profiles were nor-
malized to the same number of reads as those in X·,j .
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Fig. 1. Deconvolution performance with only a single reference profile (macrophages).
Predicted cell frequencies are plotted versus real frequencies. Results from the standard
DTD model with g = 1 are shown in (a), for DTD with loss-function learning in (b).

3.2 Loss-Function Learning Improves DTD Accuracy in the Case
of Incomplete Reference Data

We generated 2,000 artificial cellular mixtures from our training cohort. For each
of these mixtures, we randomly drew 100 single-cell profiles, summed up their
raw counts, and normalized them to a fixed number of total counts. Analogously,
we generated 1,000 artificial cellular validation mixtures.

Then, we restricted X to three cell types (T cells, B cells, and macrophages).
Hence endothelial cells, CAFs, NK cells and tumor/unclassified cells in the
mixtures are not represented in X. For standard DTD with g = (1, . . . , 1),
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we observed correlation coefficients of 0.70 (T cells), 0.39 (B cells), and 0.52
(macrophages) between true and estimated cell population sizes for the val-
idation mixtures. These improved to 0.86 (T cells), 0.89 (B cells), and 0.83
(macrophages) for loss-function learning, after we ran 1000 iterations of the gra-
dient descent algorithm on the training data. We tested our gradient descent
algorithm on the 100 most variable genes for 100 different uniformly drawn
starting points g ∈ [0, 1]p. The maximal Euclidean distance between resulting
composition vectors c was 2%.

To test the limits of the approach, we excluded all but the macrophages,
which account for less than 3% of all cells, from the reference data X. We
observed, that standard DTD broke down, while loss-function learning yielded a
model that predicted macrophage abundances that still correlated well (r = 0.84)
with the true abundances (Fig. 1).

3.3 Loss-Function Learning Improves the Quantification of Small
Cell Populations

We generated data as above for mixtures of T cells, B cells, macrophages,
endothelial cells, CAFs, NK cells and tumor/unclassified cells, and use all cells
except the tumor cells in X. This time we control the abundance of B cells in the
simulated mixtures at 0 to 5 cells, 5 to 15, 15 to 30, 30 to 50, and 50 to 75 out
of 100 cells. Not surprisingly, small fractions of B cells were harder to quantify
than large ones. Loss-function learning improved the accuracy for all amounts of
B cells, but the improvements were greatest for small amounts (Fig. 2a). With
only 0 to 5 cells in a mixture the accuracy improved from r = 0.22 to r = 0.79.
Furthermore, we observed that loss-function learning on small B-cell proportions
yielded a model that was highly predictive of B-cell contributions over the whole
spectrum (Fig. 2a green stars).

If we compare the top-ranked genes of the model learned for the small B-cell
population (Fig. 2b) to that of the macrophage-focussed simulation (Fig. 2c), we
observe that the former still comprises marker genes to distinguish all cell types,
while the latter focusses on genes that characterize macrophages.

3.4 Loss-Function Learning Improves the Distinction of Closely
Related Cell Types

The cell types that were annotated by [14] displayed very different expression
profiles. If we are interested in T-cell subtypes such as CD8+ T cells, CD4+
T-helper (Th) cells, and regulatory T cells (Tregs), reference profiles are more
similar and DTD is more challenging. We subdivided the fraction of annotated
T-cell profiles as follows: all T cells with positive CD8 (sum of CD8A and CD8B)
and zero CD4 count were labelled CD8+ T cells (1,130). Vice versa, T cells with
zero CD8 and positive CD4 count were labelled CD4+ T cells (527). These
were further split into Tregs if both their FOXP3 and CD25 (IL2RA) count was
positive (64), and CD4+ Th cells otherwise (463). T cells that fulfilled neither
the CD4+ nor the CD8+ criteria (411) contributed to the mixtures, but were
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Fig. 2. Plot (a) shows how the correlation between predicted and true cellular frequen-
cies for B cells depends on the proportion of B cells. The blue triangles correspond to
models from loss-function learning and red diamonds to the standard DTD model with
g = 1. Furthermore, the green stars show how the model trained on mixtures with 0 to
5% B cells extrapolates to higher B-cell proportions. The orange line in contrast was
trained on mixtures with 50 to 75% B cells and extrapolates to lower B-cell proportions.
Plot (b) shows a heatmap of the 50 most important genes corresponding to the green
star model (genes were ranked by ĝi×var(Xi,·)). Plot (c) shows an analogous heatmap
for loss-function learning on macrophages only. Blue corresponds to low expression and
red to high expression. (Color figure online)

not assessed by DTD. We augmented the reference matrix X, here consisting
of T cells, B cells, macrophages, endothelial cells, CAFs and NK cells, by these
cell types, replacing the original all T-cell profile with the more specific profiles
for CD8+ T cells, CD4+ Th and Tregs. Then we simulated 2,000 training and
1,000 test mixtures as described above.

For standard DTD with g = 1 we observed correlation coefficients of 0.19
(CD4+ Th), 0.53 (CD8+), and 0.08 (Tregs) between true and estimated cell
population sizes. These improved to 0.58 (CD4+ Th), 0.78 (CD8+), and 0.57
(Tregs) for our method (Fig. 3).

1.
1

1.
2

1.
3

1.
4

1.
5

true C

pr
ed

ic
te

d 
C

0.05 0.1 0.15 0.2 0.25

(a)

cor=0.191 −0
.3

−0
.2

−0
.1

0.
0

0.
1

true C

pr
ed

ic
te

d 
C

0.15 0.2 0.25 0.3 0.35 0.4

(b)

cor=0.527

−0
.4

5
−0

.3
5

−0
.2

5
−0

.1
5

true C

pr
ed

ic
te

d 
C

0 0.02 0.04 0.06

(c)

cor=0.081

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

true C

pr
ed

ic
te

d 
C

0.05 0.1 0.15 0.2 0.25

(d)

cor=0.582 0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

true C

pr
ed

ic
te

d 
C

0.15 0.2 0.25 0.3 0.35 0.4

(e)

cor=0.778

0.
00

0.
05

0.
10

CD4+ Tregs (loss−funct. learn.)

true C

pr
ed

ic
te

d 
C

0 0.02 0.04 0.06

(f)

cor=0.569

Fig. 3. Deconvolution of T-cell subentities. Results from the standard DTD model with
g = 1 are shown in the upper row, plots (a–c), results from loss-function learning in
the lower row, plots (d–e).
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3.5 Loss-Function Learning is Beneficial Even for Small Training
Sets, and the Performance Improves as the Training Dataset
Grows

We repeated the simulation in Subsect. 3.4, but varied the size of the training
dataset. We observed that loss-function learning improved accuracy for training
datasets as small as 15 samples. Moreover, with more training data added the
boost in performance grew and saturated only for training sets with more than
1,000 samples (Fig. 4).
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Fig. 4. Performance with and without loss-function learning as a function of the size
of the training set. Performance was assessed by calculating the average correlations
between predicted and true cellular contributions over all cell types. The blue diamonds
and black triangles correspond to the performance of loss-function learning for the
validation mixtures and training mixtures, respectively. The performance of standard
DTD with g = 1 is shown as a red line for the validation mixtures.

3.6 HPC-Empowered Loss-Function Learning Rediscovers
Established Cell Markers and Complements Them by New
Discriminatory Genes for Improved Performance

Here, we introduce a final model, optimized on the 5,000 most variable genes. For
this purpose, we generated 25,000 training mixtures from the melanomas of the
training data. With standard desktop workstations the solution of this problem
was computationally not feasible. A single computation of the gradient took 16 h
(2x Intel Xeon CPU [X5650; Nehalem Six Core, 2.67 GHz], 148 Gb RAM), and
this needs to be computed several hundred times until convergence. Therefore, we
developed a High-Performance-Computing (HPC) implementation of our code
by parallelizing Eqs. (3) and (10) with MPI, using the pbdMPI library [15,16] as
an interface. Furthermore, we linked R with the Intel Math Kernel Library for
threaded and vectorized matrix operations. We ran the algorithm on 25 nodes of
our QPACE 3 machine [17] with 8 MPI tasks per node and 32 hardware threads
per task, where each thread can use two AVX512 vector units. In 16 h 5,086
iterations were finished, after which the loss (3) was stable to within 1%.

The high-performance model includes several genes, whose expression is char-
acteristic for the cells distinguished in the present study. These include, among
others, the CD8A gene, which encodes an integral membrane glycoprotein essen-
tial for the activation of cytotoxic T-lymphocytes [18] and the protection of a
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subset of NK cells against lysis, thus enabling them in contrast to CD8- NK
cells to lyse multiple target cells [19]. As evident from Fig. 5, NK cells are clearly
set apart from all the other cell types studied by the expression of the killer cell
lectin like receptor genes KLRB1, KLRC1, and KLRF1 [20]. B cells, on the other
hand, are clearly characterized by the expression of (i) CD19, which assembles
with the antigen receptor of B lymphocytes and influences B-cell selection and
differentiation [21], (ii) CD20 (MS4A1), which is coexpressed with CD19 and
functions as a store-operated calcium channel [22], (iii) B Lymphocyte Kinase
(BLK), a src-family protein tyrosine kinase that plays an important role in B-
cell receptor signaling and phosphorylates specifically (iv) CD79A at Tyr-188
and Tyr-199 as well as CD79B (not among the top 150 genes) at Tyr-196 and
Tyr-207, which are required for the surface expression and function of the B-
cell antigen receptor complex [23], and (v) BLNK, which bridges BLK activa-
tion with downstream signaling pathways [24]. The expression of FOXP3 is also
highly cell specific. FOXP3 distinguishes regulatory T cells from other CD4+
cells and functions as a master regulator of their development and function [25].
Finally, CD4+ T-helper (Th) cells are distinguished indirectly from all the other
aforementioned lymphocytes by the lack of expression of cell type-specific genes.
In contrast to lymphocytes, macrophages, cancer-associated fibroblasts (CAFs),
and endothelial cells, which line the interior surface of blood vessels and lym-
phatic vessels, are characterized each by a much larger number of genes. Exem-
plary genes include CD14, CD163, MSR1, STAB1, and CSF1R for macrophages.
The monocyte differentiation antigen CD14, for instance, mediates the innate
immune response to bacterial lipopolysaccharide (LPS) by activating the NF-κB
pathway and cytokine secretion [26], while the colony stimulating factor 1 recep-
tor (CSF1R) acts as a receptor for the hematopoietic growth factor CSF1, which
controls the proliferation and function of macrophages [27]. CAFs, on the other
hand, are distinguished by the expression of genes encoding extracellular matrix
proteins such as fibulin-3 (EFEMP1), various collagens (COL1A1, COL3A1,
COL6A1, COL6A3), versican (VCAN), a well known mediator of cell-to-cell
and cell-to-matrix interactions [28] that plays critical roles in cancer biology
[29], as well as the matrix metalloproteinases MMP1 and MMP2, two colla-
gen degrading enzymes that allow cancer cells to migrate out of the primary
tumor to form metastases [30]. Noteworthy is also GREM1, an antagonist of
the bone morphogenetic protein pathway. Its expression and secretion by stro-
mal cells in tumor tissues promotes the survival and proliferation of cancer cells
[31]. Genes characteristic for endothelial cells include among others CDH5, a
member of the cadherin superfamily essential for endothelial adherens junction
assembly and maintenance [32], the endothelial cell-specific chemotaxis recep-
tor (ECSCR) gene, which encodes a cell-surface single-transmembrane domain
glycoprotein that plays a role in endothelial cell migration, apoptosis and pro-
liferation [33], claudin-5 (CLDN5), which forms the backbone of tight junction
strands between endothelial cells [34], and the von Willebrand factor (VWF),
which mediates the adhesion of platelets to sites of vascular damage by bind-
ing to specific platelet membrane glycoproteins and to constituents of exposed
connective tissue [35].
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We discussed 28 genes of the top 150 shown in Fig. 5. These genes have a
total weight of 28% of all 5,000 gene weights (calculated as ĝi × var(Xi,·)). Our
algorithm complements this gene set with additional genes, including some that
were, to our knowledge, not yet used to characterize cell types. An interesting
example is CXorf36 (DIA1R), which has been described as being expressed at
low levels in many tissues and deletion and/or mutations of which have been
associated with autism spectrum disorders [36]. However, nothing is known about
its function to date. Therefore, its observed overexpression in endothelial cells
may provide an important clue for future study on its function.

3.7 Loss-Function Learning Shows Similar Performance
as CIBERSORT for the Dominating Cell Populations
and Improves Accuracy for Small Populations
and in the Distinction of Closely Related Cell Types

Next we compared our model trained in Subsect. 3.6 to a competing method.
For this, we generated 1,000 test mixtures from our validation melanomas.
We chose CIBERSORT [12] for comparison, because it was consistently among
the best DTD algorithm in a broad comparison of five different algorithms on
several benchmark datasets [12]. We ran CIBERSORT on the test mixtures,
using two distinct approaches: first, we uploaded our validation data to CIBER-
SORT using their reference profiles. The performance is summarized in Fig. 6
as CIBERSORTa (yellow). We observed that the large population of B cells
was estimated accurately, while smaller populations were inaccurate (NK cells,
Tregs). Next, we uploaded our reference profiles and used the CIBERSORT
gene selection (CIBERSORTb green). We found that highly abundant cell types
(B cells and CD8+ T cells) were predicted with high accuracy. However, the
distinction of similar cell types such as CD4+ T helper cells and Tregs was com-
promised, r = 0.42 and r = 0.42, respectively. Similarly, predictions for the small
populations of CAFs were compromised. That might be explained by the fact
that CIBERSORT does not take into account their distinction and thus appro-
priate marker genes might be missing. In a direct comparison to CIBERSORT
our method showed similar or better performance.

Next, we tested whether our method would have also worked for bulk profiles
generated by a different technology than the reference profiles. We used the scR-
NAseq derived loss-function and the bulk profiles described above but replaced
the reference profiles in X by microarray data downloaded from the CIBER-
SORT webpage. We rescaled the microarray matrix X such that the gene-wise
means were identical to the scRNAseq data. Results are shown in Fig. 6 in pink.
Although accuracy was slightly reduced, we still improved on the CIBERSORT
results.
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3.8 Loss-Function Learning Improves the Decomposition of Bulk
Melanoma Profiles

All mixtures discussed so far were artificial because only 100 single-cell profiles
were chosen randomly. They might differ significantly from mixtures in real tis-
sue. Therefore, we generated 19 full bulk melanoma profiles by summing up the
respective single-cell profiles. These should reflect bulk melanomas [37]. Our pre-
dictions are contrasted with the true proportions in Fig. 7. Only the predictions
for Tregs were compromised with r = 0.48, while the predictions for all other
cell types were reliable with correlations ranging from r = 0.70 (CD4+ Th) to
r = 0.99 (CAFs) on the validation melanomas.
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Fig. 7. Deconvolution of melanoma tissues. The circles indicate melanomas from the
validation data and plusses from the training data. Figure (a) to (h) correspond to B
cells, macrophages, endothelial cells, CAFs, NK cells, CD4+ Th cells, CD8+ T cells,
and CD4+ Tregs, respectively. The solid black lines show the corresponding linear
regression fits on the validation data, the dashed lines the identity.

4 Discussion

We suggest using training data for loss-function learning for digital tissue decon-
volution to adapt the deconvolution algorithm to the requirements of specific
application domains. The concept is similar to an embedded feature-selection
approach in regression or classification problems. In both contexts feature selec-
tion is directly linked to a prediction algorithm and not treated as an independent
preprocessing step.

The main limitation of our method is the availability of training data. Other
methods do not use, and cannot use, training data. In fact, the strength of loss-
function learning results primarily from the additional information in training
data with known cellular compositions. Such data is not always available, but
with current improvements in FACS and single-cell sequencing technology, it is
becoming increasingly available.

We described and tested a specific instance of loss-function learning using
squared residuals for Lg. The concept is not limited to this type of inner loss
function and can also be used in combination with other loss functions such as
those from penalized least-squares regression [11], l1 regression, or support vector
regression [12]. However, the least-squares loss function allowed us to state the
outer optimization problem in a closed analytical form, reducing computational
burden.

The outer loss function L evaluates the fit of estimated and true cellular pro-
portions in the training samples. We chose the correlation of estimated versus
true quantities across samples, and no absolute measure of deviation such as
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||c − ĉ||22, which does not fulfill symmetry (4). Moreover, we did not require the
estimated proportions Ĉ·,k for tissue k to sum up to one. Consequently, the esti-
mated cellular composition for a given cell type is comparable between tissues,
but the estimated cellular composition across cell types is not. When testing
our method we did not look at absolute deviations of true versus estimated cell
proportions but only at their correlation. We do not infer how many cells of a
specific type (e.g., T cells) are in a tissue (Fig. 7), nor whether they constituted
10% or 20% of the cells in this tissue. However, if we had two tissues and esti-
mated that there were more cells of that type in the first tissue compared to the
second, this relation was also found in the true cell populations.

In summary, we introduced loss-function learning as a new machine-learning
approach to the digital tissue deconvolution problem. It allows us to adapt to
application-specific requirements such as focusing on small cell populations or
delineating similar cell types. In simulations and in an application to melanoma
tissues the use of training data allowed our method to quantify large cell fractions
as accurately as existing methods and significantly improved the detection of
small cell populations and the distinction of similar cell types.

Acknowledgement. This work was supported by BMBF (eMed Grant 031A428A)
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Abstract. Methods for inferring population structure from genetic
information traditionally assume samples are contemporary. Yet, the
increasing availability of ancient DNA sequences begs revision of this
paradigm. We present Dystruct (Dynamic Structure), a framework and
toolbox for inference of shared ancestry from data that include ancient
DNA. By explicitly modeling population history and genetic drift as a
time-series, Dystruct more accurately and realistically discovers shared
ancestry from ancient and contemporary samples. Formally, we use a nor-
mal approximation of drift, which allows a novel, efficient algorithm for
optimizing model parameters using stochastic variational inference. We
show that Dystruct outperforms the state of the art when individuals are
sampled over time, as is common in ancient DNA datasets. We further
demonstrate the utility of our method on a dataset of 92 ancient samples
alongside 1941 modern ones genotyped at 222755 loci. Our model tends
to present modern samples as the mixtures of ancestral populations they
really are, rather than the artifactual converse of presenting ancestral
samples as mixtures of contemporary groups.

Keywords: Population genetics · Population structure
Ancient DNA · Time-series · Variational inference · Kalman filtering

Availability: Dystruct is implemented in C++, open-source, and avail-
able at https://github.com/tyjo/dystruct.

1 Introduction

The sequencing of the first ancient human genome [28], first Denisovan genome
[29], and first Neanderthal genome [12] — all in 2010 — opened the floodgates for
population genetic studies that include ancient DNA [19]. Ancient DNA grants
a unique opportunity to investigate human evolutionary history, because it can
provide direct evidence of historical relationships between populations around
the world. Indeed, through combining ancient and modern samples, ancient DNA
has driven many notable discoveries in human population genetics over the past
ten years including the detection of introgression between anatomically modern
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humans and Neanderthals [24], evidence for the genetic origin of Native Ameri-
cans [26], and evidence pushing the date of human divergence in Africa to over
250,000 years ago [30], among many others [2,9,19,33].

Nonetheless, incorporating new types of DNA into conventional analysis
pipelines requires careful examination of existing models and tools. Ancient DNA
is a particularly challenging example: individuals are sampled from multiple time
points from populations where allele frequencies have drifted over time. Hence,
allele frequencies are correlated over time. The current state of the art for his-
torical inference from ancient DNA uses pairwise summary statistics calculated
from genome-wide data, called drift indices or F-statistics [21,22], not to be
confused with Wright’s F-statistics, that measure the amount of shared genetic
drift between pairs of populations. Drift indices have several desirable theoretical
properties, such as unbiased estimators, and can be used to conduct hypothe-
sis tests of historical relationships and admixture between sampled populations
[21]. Combined with tree-building approaches from phylogenetics, drift indices
can reconstruct complex population phylogenies [18] including admixture events
that are robust to difference in sample times. Computing drift indices, however,
requires identifying populations a priori, a challenging task given that multiple
regions around the world experienced substantial population turnover. Thus,
exploratory tools that take an unsupervised approach to historical inference are
required.

One of the most ubiquitous approaches to unsupervised ancestry inference
is through the Pritchard-Stephens-Donnelly (PSD) model [23], implemented in
the popular software programs structure and ADMIXTURE [1]. Under the PSD
model, sampled individuals are modeled as mixtures of latent populations, where
the genotype at each locus depends on the population of origin of that locus, and
allele frequencies in the latent populations. Individuals can be clustered based
on their mixture proportions, the proportion of sampled loci inherited from each
population, which are interpreted as estimates of global ancestry [1]. ADMIX-
TURE computes maximum likelihood estimates of allele frequencies and ances-
try proportions under the PSD model, while structure uses MCMC to compute
posterior expectations. A key assumption of the PSD model is that populations
are in Hardy-Weinberg equilibrium: the allele frequencies in each population are
fixed. For ancient DNA, this assumption is clearly violated. The robustness of
the PSD model to this violation remains under-explored.

In this paper, we develop a model-based method for inferring shared his-
tory between ancient and modern samples – Dystruct (Dynamic Structure) – by
extending the PSD model to time-series data. To efficiently infer model param-
eters, we leverage the close connection between the PSD model and another
model from natural language processing: latent Dirichlet allocation (LDA) [6].
The connection between the PSD model and LDA has long been known [3,5],
and applications of the statistical methodology surrounding LDA are beginning
to enter the population genetics literature [11,27]. Similar to the PSD model,
LDA models documents as mixtures of latent topics, where each topic specifies
a probability distribution over words. LDA has been successfully extended to a
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time-series model [5], where the word frequencies in topic distributions change
over time in a process analogous to genetic drift. Thus, these dynamic topic
models provide a natural starting point for models of population structure that
incorporate genetic drift.

Our contributions are three-fold. First, we developed an efficient inference
algorithm capable of parameter estimation under our time-series model. We
extended the stochastic variational inference algorithm for the PSD model devel-
oped by [11] to time series data using the variational Kalman filtering technique
developed by [5], and released software implementing our inference algorithm for
general use. Second, we show that our model can lead to new insights on ancient
DNA datasets: using simulations we demonstrate that Dystruct obtains more
accurate ancestry estimates than ADMIXTURE on ancient DNA datasets; we
then apply our model to a dataset of 92 ancient and 1941 modern samples geno-
typed at 222755 loci. Third, and more generally, our model opens the possibility
for future model based approaches incorporating more complex demographic
histories, complementing existing approaches for analyzing ancient DNA.

2 Methods

2.1 Preliminaries

Suppose we have genotypes of D individuals across L independent loci. Each
individual d is a vector of L binomial observations, x = (xd1, . . . , xdL) for
xdl ∈ {0, 1, 2}, where xdl is the number of non-reference alleles at locus l. Each
individual is assumed to have been alive during one of a finite set of time points
g[1], g[2], . . . , g[T ]. g[t] is measured as number of generations since the earliest
time of interest. Each individual d is time stamped by td ∈ {1, 2, . . . , T}, where
g[td] gives the time in generations when individual d was alive. We further define
Δg[t] = g[t] − g[t − 1], the time in generations between time point t and time
point t − 1.

Under the PSD model, each individual is a mixture from K latent popula-
tions. Let θd = (θd1, . . . , θdK) be the ancestry proportions for individual d: θd is
the vector of probabilities that a locus in individual d originated in population
k. Thus,

∑
k θdk = 1. Let βkl[t] be the frequency of non-reference allele l in pop-

ulation k at time point t. The generative model for genotypes in each individual
is (Fig. 1):

θd ∼ Dirichlet(α1, α2, ..., αK) (1)

xdl

∣
∣θd , β1:K,l[td] ∼ Binomial

(

2,
∑

k

θdkβkl[td]

)

(2)

This follows the recharacterization of the original PSD model by [1] and [11].
To extend the model to time series data, we allow the allele frequencies to

change at each time point using a normal approximation to genetic drift [7]:

βkl[t]
∣
∣ βkl[t − 1] ∼ Normal

(

βkl[t − 1],
Δg[t]
12Nk

)

(3)
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Fig. 1. Graphical model depicting Dystruct’s generative model. D individuals are geno-
typed at L loci from K populations (boxes), and time stamped with time point td. Each
genotype in each individual, xdl, is a binomial observation that depends on: (i) ancestry
proportions, θd, and; (ii) allele frequencies βkl[td] at time point td. Allele frequencies
βkl[t] drift over time.

Nk is the effective population size in population k. Initial allele frequencies βkl[0]
and Nk are parameters of the model. Initial allele frequencies βkl[0] are estimated
from data, while Nk are treated as known and fixed.

The state space model here is slightly different than normal approximation to
the Wright-Fisher model for genetic drift. Under the Wright-Fisher model, the
variance of allele frequencies Δg[t] generations in the future, given the current
allele frequency βkl[t − 1], is Δgtβkl[t−1](1−βkl[t−1])

2Nk
.

We approximate the variance by averaging over the interval (0, 1):
∫ 1

0

Δg[t]βkl[t − 1](1 − βkl[t − 1])
2Nk

dβkl[t − 1] =
Δg[t]
12Nk

(4)

In practice, through simulations, we found that we were able to obtain accurate
estimates despite this approximation.

2.2 Posterior Inference

We take a Bayesian approach by inferring ancestry proportions through the
posterior distribution p(θ1:D,β1:K,1:L|x1:D,1:L). Direct posterior inference is
intractable because the normal distribution is not a conjugate prior for the bino-
mial. Following [5], we derive a variational inference algorithm that approximates
the true posterior. We hereby summarize the variational inference approach for
completion.

Variational inference methods [4,15,34] approximate the true posterior by
specifying a computationally tractable family of approximate posterior distribu-
tions indexed by variational parameters, φ. These parameters are then optimized
to minimize the Kullback-Leibler (KL) divergence between the true posterior and
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its variational approximation. The key to variational inference algorithms relies
on the observation that, given some distribution of latent parameters q(z), the
log likelihood of the observations x can be decomposed into two terms:

log pη (x) =
∫

log
(

pη (x,z)
pη (z|x)

qφ(z)
qφ(z)

)

qφ(z) dz (5)

= Eq

[

log
(

pη (x,z)
qφ(z)

)]

+ Eq

[

log
(

qφ(z)
pη (z|x)

)]

(6)

= L(η,φ;x) + KL
(
qφ(z)

∣
∣
∣
∣pη (z|x)

)
(7)

where η are the model parameters and φ are the variational parameters. The
term on the right is the KL divergence between the true posterior and the vari-
ational approximation. Because the KL divergence is non-negative, the term L,
the evidence lower bound (ELBO), is a lower bound on the log-likelihood. In
practice L is maximized, thereby minimizing the KL divergence between the
true and approximate posterior.

We approximate the true posterior of our model with the variational posterior

q(β1:K,1:L,θ1:D) =
D∏

d=1

q(θd

∣
∣θ̂d)

K∏

k=1

L∏

l=1

T∏

t=1

q(βkl[t]
∣
∣β̂kl[1 : T ]) (8)

q(θd; θ̂d) specifies a Dirichlet(θ̂d) distribution. In the next section we elaborate
on the form of q(βkl[t]

∣
∣β̂kl[1 : T ]).

2.3 Variational Kalman Filtering

Successful variational inference algorithms depend on formulating an approxi-
mate posterior close in form to the true posterior, and such that the expectations
that make up the ELBO are tractable. To maintain the relationship between the
relationship between the βkl[t] over time, we use Variational Kalman filtering,
developed by [5] for inference in state space models with intractable posteriors.
Variational Kalman filtering introduces variational parameters β̂kl[t] that are
pseudo-observations from the state space model:

β̂kl[t]
∣
∣ βkl[t] ∼ Normal(βkl[t], ν2) (9)

ν is an additional variational parameter. Given the pseudo-observations, stan-
dard Kalman filtering and smoothing equations can be used to calculate marginal
means, m̃kl[t], and marginal variances, ṽkl[t], of the latent variables βkl[1 : T ]
given the pseudo-observations β̂kl[1 : T ]. The variational approximation takes
the form

βkl[t]
∣
∣ β̂kl[1 : T ] ∼ Normal(m̃kl[t], ṽkl[t]) (10)

The ELBO is maximized with respect to the pseudo-observations using a conju-
gate gradient algorithm for numerical optimization.
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2.4 Stochastic Variational Inference

Variational inference algorithms in the setting above often rely on optimizing
parameters through coordinate ascent: each parameter is updated iteratively
while the others remain fixed. Coordinate ascent can be computationally expen-
sive, especially as the size of the data becomes large. Instead, we optimize the
ELBO using stochastic variational inference [4,14]. Briefly, stochastic variational
inference distinguishes global variational parameters, such as θ̂d, whose coor-
dinate ascent update requires iterating through the entire dataset, with local
parameters, β̂kl, whose update only depends on a subset of the data. We first
subsample a particular locus l, update the pseudo-outputs for that locus, then
update the variational parameters θ̂d by taking a weighted average of the pre-
vious parameter estimates with an estimate obtained using locus l alone. This
process continues until the θ̂d converge. Estimates of ancestry proportions are
computed by taking the posterior expectation of θd : Eq[θdk] = θ̂dk∑

s θ̂ds
.

We further optimized our implementation, obtaining an order of magnitude
speed up over a naive implementation. This improvement makes Dystruct feasi-
ble to use on realistic size datasets (see Sect. 3.3).

2.5 Simulated Data

We designed simulations to test the ability of our method to assign ancient
samples into populations under two historical scenarios (Fig. 2). In each sce-
nario, we simulated K populations at 10000 independent loci according to the
Wright-Fisher model for genetic drift. We drew initial allele frequencies from
a Uniform(0.2, 0.8) distribution, and simulated discrete generations by drawing
2Nk individuals randomly with replacement from the previous generation. When
then drew individuals at specific time points with genotypes and ancestry pro-
portions specified by the generative model based on the allele frequencies at
that time point. Note that we are not simulating data under the normal approx-
imation. We fixed effective population to Nk = 2500 for all k = 1, ...,K. To
generalize our results across different effective population sizes, we measured
time in coalescent units (1 coalescent unit = 2Nk generations). We denote the
total simulation time in coalescent units by τ . Each simulation was run across
τ ∈ {0.02, 0.04, 0.08, 0.16}.

One concern is that our model assumes allele frequencies are away from 0
or 1, while the allele frequencies in the Wright-Fisher model are guaranteed to
fix given sufficient time. We allowed allele frequencies to fix in our simulations
to test our model’s robustness to violating this assumption, though most allele
frequencies do not reach fixation.

In the baseline simulation scenario (Fig. 2a), we sampled 40 individuals from
K = 3 populations at 3 evenly spaced time points. We drew ancestry propor-
tions from a Dirichlet(13 , 1

3 , 1
3 ) distribution, ensuring that the majority of any

one individual’s genome originated in a single population, with smaller ancestry
proportions from the remaining populations.
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Fig. 2. Simulation scenarios explored with Dystruct. (a) Baseline simulation scenario.
Three populations were simulated that admixed at three time points. Individuals were
sampled from the admixed populations. (b) Admixed simulation scenario. Ancient indi-
viduals were sampled from four source populations that merged to form a modern
admixed population. Modern samples were from the admixed population.

In the admixed scenario (Fig. 2b) we performed simulations that try to bet-
ter mimic available real data. We assumed a modern population resulted from
the instantaneous admixture of K = 4 ancestral populations. Ancient individ-
uals were sampled pre-admixture and modern individuals were sampled post-
admixture. We included two additional features found in current datasets. Such
datasets comprise a small number of ancient samples when compared with mod-
ern samples. We therefore simulated 508 samples where 23 of the samples were
ancient and the remaining 485 were modern, reflecting the ∼1:21 balance of
samples in Sect. 2.6. All ancient samples occurred before time τ

2 . One of the four
ancient populations was observed in the oldest ancient sample only, but appeared
in modern populations, reflecting the possibility that an ancient population may
only be sampled once.

We repeated each simulation scenario 10 times for a total of 80 simulations,
and compared the ability of our model to infer the parameter θd with that
of ADMIXTURE (v1.3.0). Since effective population size is a fixed parameter
in Dystruct, we tested Dystruct on several effective population sizes. We ran
Dystruct with Nk = 1000, 2500, 5000, 10000 for all simulation scenarios. For each
simulation, we computed the root-mean-square error (RMSE) between the true
ancestry proportions, and parameters inferred by Dystruct and ADMIXTURE:

RMSE(θtrue,θinf ) =
√

1
DK

∑D
d=1

∑K
k=1(θ

true
dk − θinf

dk )2.

2.6 Real Data

[13] analyze a hybrid dataset of modern humans from the Human Origins
dataset [17,21], 69 newly sequenced ancient Europeans, along with 25 previ-
ously published ancient samples [10,32], to study population turnover in Europe.
Ancient samples included several Holocene hunter gatherers (∼5–6 thousand
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years ago; kya), Neolithic farmers (∼5–8kya), Copper/Bronze age individuals
(∼3.1–5.3kya), and an Iron Age individual (∼2.9kya). In addition, the data
include three Pleistocene hunter-gatherers — ∼45kya Ust-Ishim [8], ∼30kya
Kostenki14 [31], and ∼24kya MA1 [26] — the Tyrolean Iceman [16], the
hunter-gatherers LaBrana1 [20] and Loschbour [17], and the Neolithic farmer
Stuttgart [17].

We analyzed the publicly available dataset from https://reich.hms.harvard.
edu/datasets. After removing related individuals identified in [13], and remov-
ing samples from outside the scope of their paper, we were left with a dataset
consisting of 92 ancient samples and 1941 modern samples genotyped at 354212
loci. Again following [13], we pruned this original dataset for linkage disequilib-
rium in PLINK [25] (v1.07) using --indep-pairwise 200 25 0.5, leaving 222755
SNPs. To convert radiocarbon dates to generation time required by Dystruct,
we assumed a 25 year generation time, and took the midpoint of the radiocarbon
dates as point estimates divided by 25 for ancient samples. We further grouped
time points for samples together if they were within the 95 % confidence interval
for radiocarbon date estimates, and were part of the same culture. The final
dataset spanned 1800 generations.

We then ran ADMIXTURE and Dystruct on the full data with effective
population size of 7500 from K = 2 to K = 16 – the best supported K in [13] –
and compared the results. Here we report the results for K = 11 because they
have the clearest historical interpretation.

3 Results

3.1 Simulated Data

When simulating data according to the baseline scenario, Dystruct consistently
matches up with ADMIXTURE or significantly outperforms it (Fig. 3a). When
interpreting the order of magnitude of these accuracy results, it is important to
note that ancestry vectors sum to 1, so a 0.01 decrease in RMSE improves relative
accuracy of these vectors by order of K%. ADMIXTURE performs much worse
as the simulated coalescent time increases, from RMSE of 0.032 for τ = 0.02
to RMSE of 0.082 at τ = 0.16. Dystruct is less susceptible to this increase in
error. Intuitively, the more coalescent time is considered, the more the drift, and
hence, the more important it is to model its dynamics.

The admixed simulation scenario demonstrates a substantial advantage to
Dystruct on ancient samples across population parameters (Fig. 4a). Nonetheless
a near zero RMSE for Dystruct is potentially misleading because ancient samples
are not admixed.

Dystruct also performs well across all samples (Fig. 3b), and on modern sam-
ples only (Fig. 4b). On modern samples, Dystruct outperforms ADMIXTURE
for τ = 0.02, 0.04 by a factor of 2. At τ = 0.08, RMSE for ADMIXTURE and
Dystruct are similar, while ADMIXTURE has a slight advantage at τ = 0.16.

https://reich.hms.harvard.edu/datasets
https://reich.hms.harvard.edu/datasets
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Fig. 3. RMSE for the (a) baseline and (b) admixed simulation scenarios. Dystruct out-
performs ADMIXTURE across several population size parameters for both scenarios.
Ancestry vectors sum to 1, so a 0.01 improvement in RMSE corresponds to a K%
performance improvement.

Fig. 4. RMSE for ancestry estimates for (a) ancient samples and (b) modern samples
for the admixed simulation scenario. Dystruct significantly outperforms ADMIXTURE
when ancient samples are unadmixed (minimum RMSE = 0.00083). On modern sam-
ples, the error remains low for both Dystruct and ADMIXTURE.

3.2 Real Data

Dystruct shows good concordance with ADMIXTURE on modern data with
known global populations (Fig. 5a). In particular, African populations (Dark
Blue; eg. Bantu, Mbuti, Yoruba), Asian populations (Red; e.g. Han, Japanese,
Korean), Native American populations (Dark Pink; e.g. Mixe, Mayan, Zapotec),
and Oceanian populations (Yellow; e.g. Papuan) all form similar genetic clusters,
among many other examples.

Dystruct and ADMIXTURE differ on the ancient samples. In Dystruct, most
ancient samples are “pure,” containing ancestry components from a single pop-
ulation, and modern day populations appear as mixtures of ancient populations.
This is evident in the entropy across samples (Fig. 6). On ancient samples, Dys-
truct has lower entropy than ADMIXTURE, while the opposite is true for mod-
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Fig. 5. Ancestry proportions inferred across (a) all samples and (b) ancient samples
only. Colors correspond between (a) and (b). Dystruct estimates ancestry for modern
populations as combinations of ancient samples, while ADMIXTURE estimates ances-
try for ancient samples as combinations of modern populations. (Color figure online)
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ern samples. This is most apparent in the different ancestry assignments for the
oldest samples: the Pleistocene hunter gatherers. MA1, Kostenki14, and Ust-
Ishim differ substantially in their representation between Dystruct and ADMIX-
TURE. These are the samples where genetic drift is most prominent. ADMIX-
TURE analysis describes MA1, Kostenki14, and Ust-Ishim as mixtures of several
modern day populations. In contrast, Dystruct describes modern populations as
mixtures of components derived from MA1, Kostenki14, and Ust-Ishim.

Fig. 6. Cumulative density function for entropy across ancient and modern samples.
Dystruct has a lower entropy for ancient samples, while ADMIXTURE has a lower
entropy for modern samples.

Most interestingly, the later ancient samples appear as mixtures of earlier
samples in Dystruct, but not in ADMIXTURE. Late Neolithic, Bronze Age,
and Iron Age samples appear as admixed between Yamnaya steppe herders
(Orange), hunter-gatherers (Brown), and early Neolithic (Green). Additionally,
we see substantial shared ancestry between these groups and modern European
populations. Both findings are consistent with [13], who found evidence support-
ing migration out of Yamnaya steppe herders into Eastern and Western Europe
∼4.5kya, and supporting a model of European populations as a mixture of these
groups. Kostenki14 shares ancestry with the Yamnaya group, suggesting a pos-
sible source for Yamnaya steppe ancestry.

3.3 Running Time

Despite the added complexity, additional model parameters, and large dataset,
Dystruct ran on the real data in approximately 6 days using 2 cores of a 2.9 GHz
Intel Core i5 processor. ADMIXTURE ran in approximately 2 days. Dystruct
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ran in 30 and 120 m per replicate per core for the baseline and admixed scenarios
respectively. ADMIXTURE ran in less than a minute.

Dystruct’s main computational consideration is the number of time points.
During each iteration the parameters of a single locus are updated, then used to
update ancestry estimates across all individuals. Estimates for ancestry param-
eters, θ̂d, can be computed in closed form in O(DK); however, the update for
the parameters β̂kl is approximated numerically. Computing the gradient of the
β̂kl at a locus takes O(T 2 + D) time because the marginal means m̃kl[t] must
be differentiated with respect to each pseudo-output.

4 Discussion

We have presented Dystruct, a model and inference procedure to understand
population structure and admixture from ancient DNA. The novelty of the model
is its explicit temporal semantics. This formalization of allele frequency dynamics
facilitates perception of modern and more recent populations as evolved from
more ancient ones or combinations thereof. We derived an efficient inference
algorithm for the model parameters using stochastic variational inference, and
released software for use by the broader community. We established the perfor-
mance of our model on several simulation scenarios, and further demonstrated
its utility for gaining insight from the analysis of real data.

Our model outperforms the current standard modeling across a variety sim-
ulation scenarios. Encouragingly, our simulations show that Dystruct does a
better job recovering population structure in the presence of genetic drift, an
effect that hinders existing tools. Our model accurately detects when modern
populations are mixtures of pure ancestral samples, while ADMIXTURE does
not, and therefore is useful for testing hypotheses of historical admixture between
ancient and modern populations.

We note the advantage of Dystruct increases with genetic drift and thus with
coalescent time elapsed. This means that in practical situations, where samples
are dated in years, Dystruct is most important when the effective population
sizes are small. From statistical inference perspective, effective population size
can be thought of as a regularizer that penalizes the difference between allele
frequencies at each time point. Thus, as effective population size increases, alleles
frequencies drift more slowly and become closer across time points, and estimates
more closely match that of ADMIXTURE.

Our results on real data match known population clusters on modern popu-
lations, and lead to new interpretations of the ancient dataset. Interestingly, the
PSD model tends to describe the oldest ancient samples as mixtures of modern
populations, while in Dystruct several modern populations appeared as mixtures
of these ancient samples. This makes sense in light of the standard goal of max-
imizing overall variance explained, a quantity dominated by the majority of the
samples, which are modern. In contrast, temporal semantics implicitly assume
admixture occurs forward in time, putting the focus on ancient populations.
Dystruct can thus provide additional insight into such populations from ancient
DNA.
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There are several limitations to our approach. First, we model populations
as independently evolving over time. This ignores historical relationships such
as population splits. Hence, Dystruct may potentially only capture one branch
of a population phylogeny at a time. Second, across all simulations and for real
data we constrained the effective population size across all populations to be the
same. Thus, the parameters converge to one of at least K symmetric modes —
population labels are exchangeable — and it is unclear how allowing different
effective population sizes for different populations changes the log likelihood with
respect to the parameter space. Future work should investigate this issue in more
detail. Nonetheless, as we have demonstrated this is not a serious limitation
to achieving reasonable estimates. Our results hold across a range of effective
population sizes provided to Dystruct. Third, there is no clear procedure for
choosing the optimal number of populations K. We have deferred this issue to
future work, but pose that this does not prevent a severe limitation: the current
state of the art uses runs across multiple values of K, and interprets the results
for each K.

More generally, we have presented a time-series model for population his-
tory with several promising extensions. Our method complements existing
approaches, and can lead to new insights on ancient DNA datasets. Our work
represents a first step toward statistical models capable of detecting complex
population histories.
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Abstract. Aligning sequencing reads on graph representations of
genomes is an important ingredient of pan-genomics. Such approaches
typically find a set of local anchors that indicate plausible matches
between substrings of a read to subpaths of the graph. These anchor
matches are then combined to form a (semi-local) alignment of the com-
plete read on a subpath. Co-linear chaining is an algorithmically rigorous
approach to combine the anchors. It is a well-known approach for the case
of two sequences as inputs. Here we extend the approach so that one of
the inputs can be a directed acyclic graph (DAGs), e.g. a splicing graph
in transcriptomics or a variant graph in pan-genomics.

This extension to DAGs turns out to have a tight connection to the
minimum path cover problem, asking us to find a minimum-cardinality
set of paths that cover all the nodes of a DAG. We study the case when
the size k of a minimum path cover is small, which is often the case in
practice. First, we propose an algorithm for finding a minimum path
cover of a DAG (V,E) in O(k|E| log |V |) time, improving all known
time-bounds when k is small and the DAG is not too dense. Second,
we introduce a general technique for extending dynamic programming
(DP) algorithms from sequences to DAGs. This is enabled by our mini-
mum path cover algorithm, and works by mimicking the DP algorithm
for sequences on each path of the minimum path cover. This technique
generally produces algorithms that are slower than their counterparts on
sequences only by a factor k. Our technique can be applied, for exam-
ple, to the classical longest increasing subsequence and longest common
subsequence problems, extended to labeled DAGs. Finally, we apply this
technique to the co-linear chaining problem, which is a generalization
of both of these two problems. We also implemented the new co-linear
chaining approach. Experiments on splicing graphs show that the new
method is efficient also in practice.
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1 Introduction

A path cover of a DAG G = (V,E) is a set of paths such that every node
of G belongs to some path. A minimum path cover (MPC) is one having the
minimum number of paths. The size of a MPC is also called the width of G.
Many DAGs commonly used in genome research, such as graphs encoding human
mutations [8] and graphs modeling gene transcripts [15], can consist, in the
former case, of millions of nodes and, in the latter case, of thousands of nodes.
However, they generally have a small width on average; for example, splicing
graphs for most genes in human chromosome 2 have width at most 10 [35,
Fig. 7]. To the best of our knowledge, among the many MPC algorithms [6,7,12,
16,27,31], there are only three whose complexities depends on the width of the
DAG. Say the width of G is k. The first algorithm runs in time O(|V ||E|+k|V |2)
and can be obtained by slightly modifying an algorithm for finding a minimum
chain cover in partial orders from [11]. The other two algorithms are due to Chen
and Chen: the first one works in time O(|V |2 + k

√
k|V |) [6], and the second one

works in time O(max(
√

|V ||E|, k
√

k|V |)) [7].
In this paper we present an MPC algorithm running in time O(k|E| log |V |).

For example, for k = o(
√

|V |/ log |V |) and |E| = O(|V |3/2), this is better than all
previous algorithms. Our algorithm is based on the following standard reduction
of a minimum flow problem to a maximum flow problem (see e.g. [2]): (i) find a
feasible flow/path cover satisfying all demands, and (ii) solve a maximum flow
problem in a graph encoding how much flow can be removed from every edge.
Our main insight is to solve step (i) by finding an approximate solution that is
greater than the optimal one only by a O(log |V |) factor. Then, if we solve step
(ii) with the Ford-Fulkerson algorithm, the number of iterations can be bounded
by O(k log |V |).

We then proceed to show that some problems (like pattern matching) that
admit efficient sparse dynamic programming solutions on sequences [10] can be
extended to DAGs, so that their complexity increases only by the minimum
path cover size k. Extending pattern matching to DAGs has been studied before
[3,24,28]. For those edit distance -based formulations our approach does not yield
an improvement, but on formulations involving a sparse set of matching anchors
[10] we can boost the naive solutions of their DAG extensions by exploiting a path
cover. Namely, our improvement applies to many cases where a data structure
over previously computed solutions is maintained and queried for computing the
next value. Our new MPC algorithm enables this, as its complexity is generally
of the same form as that of solving the extended problems. Given a path cover,
our technique then computes so-called forward propagation links indicating how
the partial solutions in each path in the cover must be synchronized.

To best illustrate the versatility of the technique itself, in the full version of
this paper [19] we show how to compute a longest increasing subsequence (LIS)
in a labeled DAG, in time O(k|E| log |V |). This matches the optimal solution
to the classical problem on a single sequence when, e.g., this is modeled as a
path (where k = 1). In Sect. 4, We also illustrate our technique with the longest
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common subsequence (LCS) problem between a labeled DAG G = (V,E) and a
sequence S.

Finally, we consider the main problem of this paper—co-linear chaining
(CLC)—first introduced in [23]. It has been proposed as a model of the sequence
alignment problem that scales to massive inputs, and has been a subject of recent
interest (see e.g. [22,29,32,36,38–40]). In the CLC problem, the input is directly
assumed to be a set of N pairs of intervals in the two sequences that match
(either exactly or approximately). The CLC alignment solution asks for a subset
of these plausible pairs that maximizes the coverage in one of the sequences,
and whose elements appear in increasing order in both sequences. The fastest
algorithm for this problem runs in the optimal O(N log N) time [1].

We define a generalization of the CLC problem between a sequence and a
labeled DAG. As motivation, we mention the problem of aligning a long sequence,
or even an entire chromosome, inside a DAG storing all known mutations of a
population with respect to a reference genome (such as the above-mentioned [8],
or more specificly a linearized version of it [14]). Here, the N input pairs match
intervals in the sequence with paths (also called anchors) in the DAG. This
problem is not straightforward, as the topological order of the DAG might not
follow the reachability order between the anchors. Existing tools for aligning
DNA sequences to DAGs (BGREAT [20], vg [25]) rely on anchors but do not
explicitly consider solving CLC optimally on the DAG.

The algorithm we propose uses the general framework mentioned above. Since
it is more involved, we will develop it in stages. We first give a simple approach
to solve a relaxed co-linear chaining problem using O((|V |+ |E|)N) time. Then,
we introduce the MPC approach that requires O(k|E| log |V | + kN log N) time.
As above, if the DAG is a labeled path representing a sequence, the running time
of our algorithm is reduced to the best current solution for the co-linear chaining
problem on sequences, O(N log N) [1]. In the full version of this paper [19], we
use a Burrows-Wheeler technique to efficiently handle a special case that we
omitted in this relaxed variant. We remark that one can reduce the LIS and
LCS problems to the CLC problem to obtain the same running time bounds as
mentioned earlier; these are given for the sake of comprehensiveness.

In the last section we discuss the anchor-finding preprocessing step. We imple-
mented the new MPC-based co-linear chaining algorithm and conducted exper-
iments on splicing graphs to show that the approach is practical, once anchors
are given. Some future directions on how to incorporate practical anchors, and
how to apply the techniques to transcript prediction, are discussed.

Notation. To simplify notation, for any DAG G = (V,E) we will assume that
V is always {1, . . . , |V |} and that 1, . . . , |V | is a topological order on V (so that
for every edge (u, v) we have u < v). We will also assume that |E| ≥ |V | − 1. A
labeled DAG is a tuple (V,E, �,Σ) where (V,E) is a DAG and � : V �→ Σ assign
to the nodes labels from Σ, Σ being an ordered alphabet.

For a node v ∈ V , we denote by N−(v) the set of in-neighbors of v and by
N+(v) the set of out-neighbors of v. If there is a (possibly empty) path from
node u to node v we say that u reaches v. We denote by R−(v) the set of nodes
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that reach v. We denote a set of consecutive integers with interval notation [i..j],
meaning {i, i + 1, . . . , j}. For a pair of intervals m = ([x..y], [c..d]), we use m.x,
m.y, m.c, and m.d to denote the four respective endpoints. We also consider
pairs of the form m = (P, [c..d]) where P is a path, and use m.P to access P .
The first node of P will be called its startpoint, and its last node will be called
its endpoint. For a set M we may fix an order, to access an element as M [i].

2 The MPC Algorithm

In this section we assume basic familiarity with network flow concepts; see [2]
for further details. In the minimum flow problem, we are given a directed graph
G = (V,E) with a single source and a single sink, with a demand d : E → Z for
every edge. The task is to find a flow of minimum value (the value is the sum of
the flow on the edges exiting the source) that satisfies all demands (to be called
feasible). The standard reduction from the minimum path cover problem to a
minimum flow one (see, e.g. [26]) creates a new DAG G∗ by replacing each node
v with two nodes v−, v+, adds the edge (v−, v+) and adds all in-neighbors of v
as in-neighbors of v−, and all out-neighbors of v as out-neighbors of v+. Finally,
the reduction adds a global source with an out-going edge to every node, and a
global sink with an in-coming edge from every node. Edges of type (v−, v+) get
demand 1, and all other edges get demand 0. The value of the minimum flow
equals k, the width of G, and any decomposition of it into source-to-sink paths
induces a minimum path cover in G.

Our MPC algorithm is based on the following simple reduction of a minimum
flow problem to a maximum flow one (see e.g. [2]): (i) find a feasible flow f : E →
Z; (ii) transform this into a minimum feasible flow, by finding a maximum flow
f ′ in G in which every e ∈ E now has capacity f(e) − d(e). The final minimum
flow solution is obtained as f(e)− f ′(e), for every e ∈ E. Observe that this path
cover induces a flow of value O(k log |V |). Thus, in step (ii) we need to shrink this
flow into a flow of value k. If we run the Ford-Fulkerson algorithm, this means
that there are O(k log |V |) successive augmenting paths, each of which can be
found in time O(E). This gives a time bound for step (ii) of O(k|E| log |V |).

We solve step (i) in time O(k|E| log |V |) by finding a path cover in G∗ whose
size is larger than k only by a multiplicative factor O(log |V |). This is based on
the classical greedy set cover algorithm, see e.g. [37, Chapter 2]: at each step,
select a path covering most of the remaining uncovered nodes.

Such approximation approach has also been applied to other covering prob-
lems on graphs, such as a 2-hop cover [9]. More importantly, the approximation-
and-refinement approach is similar to the one from [11] for finding the minimum
number k of chains to cover a partial order of size n. A chain is a set of pairwise
comparable elements. The algorithm from [11] runs in time O(kn2), and it has
the same feature as ours: it first finds a set of O(k log n) chains in the same way
as us (longest chains covering most uncovered elements), and then in a second
step reduces these to k. However, if we were to apply this algorithm to DAGs,
it would run in time O(|V ||E| + k|V |2), which is slower than our algorithm for
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small k. This is because it uses the classical reduction given by Fulkerson [12]
to a bipartite graph, where each edge of the graph encodes a pair of elements in
the relation. Since DAGs are not transitive in general, to use this reduction one
needs first to compute the transitive closure of the DAG, in time O(|V ||E|).

We now show how to solve step (i) within the claimed running time, by
dynamic programming.

Lemma 1. Let G = (V,E) be a DAG, and let k be the width of G. In time
O(k|E| log |V |), we can compute a path cover P1, . . . , PK of G, such that K =
O(k log |V |).

Proof. The algorithm works by choosing, at each step, a path that covers the
most uncovered nodes. For every node v ∈ V , we store m[v] = 1, if v is not
covered by any path, and m[v] = 0 otherwise. We also store u[v] as the largest
number of uncovered nodes on a path starting at v. The values u[·] are computed
by dynamic programming, by traversing the nodes in inverse topological order
and setting u[v] = m[v] + maxw∈N+(v) u[v]. Initially we have m[v] = 1 for all v.
We then compute u[v] for all v, in time O(|E|). By taking the node v with the
maximum u[v], and tracing back along the optimal path starting at v, we obtain
our first path in time O(|E|). We then update m[v] = 0 for all nodes on this
path, and iterate this process until all nodes are covered. This takes overall time
O(K|E|), where K is the number of paths found.

This algorithm analysis is identical to the one of the classical greedy set
cover algorithm [37, Chapter 2], because the universe to be covered is V and each
possible path in G is a possible covering set, which implies that K = O(k log |V |).

��

Combining Lemma 1 with the above-mentioned application of the Ford-
Fulkerson algorithm, we obtain our first result:

Theorem 1. Given a DAG G = (V,E) of width k, the MPC problem on G can
be solved in time O(k|E| log |V |).

3 The Dynamic Programming Framework

In this section we give an overview of the main ideas of our approach.
Suppose we have a problem involving DAGs that is solvable, for example

by dynamic programming, by traversing the nodes in topological order. Thus,
assume also that a partial solution at each node v is obtainable from all (and
only) nodes of the DAG that can reach v, plus some other independent objects,
such as another sequence. Furthermore, suppose that at each node v we need to
query (and maintain) a data structure T that depends on R−(v) and such that
the answer Query(R−(v)) at v is decomposable as:

Query(R−(v)) =
⊕

i

Query(R−
i (v)). (1)
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Fig. 1. A path cover P1, P2, P3 of a DAG. The forward links entering v from
last2reach[v, i] are shown with dotted black lines, for i ∈ {1, 2, 3}. We mark in gray
the set R−(v) of nodes that reach v.

In the above, the sets R−
i (v) are such that R−(v) =

⋃
i R−

i (v), they are not
necessarily disjoint, and

⊕
is some operation on the queries, such as min or max,

that does not assume disjointness. It is understood that after the computation
at v, we need to update T . It is also understood that once we have updated T at
v, we cannot query T for a node before v in topological order, because it would
give an incorrect answer.

The first idea is to decompose the graph into a path cover P1, . . . , PK . As
such, we decompose the computation only along these paths, in light of (1). We
replace a single data structure T with K data structures T1, . . . , TK , and perform
the operation from (1) on the results of the queries to these K data structures.

Our second idea concerns the order in which the nodes on these K paths
are processed. Because the answer at v depends on R−(v), we cannot process
the nodes on the K paths (and update the corresponding Ti’s) in an arbitrary
order. As such, for every path i and every node v, we distinguish the last node
on path i that reaches v (if it exists). We will call this node last2reach[v, i].
See Fig. 1 for an example. We note that this insight is the same as in [17], which
symmetrically identified the first node on a chain i that can be reached from
v (a chain is a subsequence of a path). The following observation is the first
ingredient for using the decomposition (1).

Observation 1. Let P1, . . . , PK be a path cover of a DAG G, and let v ∈ V (G).
Let Ri denote the set of nodes of Pi from its beginning until last2reach[v, i]
inclusively (or the empty set, if last2reach[v, i] does not exist). Then R−(v) =⋃K

i=1 Ri.

Proof. It is clear that
⋃K

i=1 Ri ⊆ R−(v). To show the reverse inclusion, consider
a node u ∈ R−(v). Since P1, . . . , PK is a path cover, then u appears on some
Pi. Since u reaches v, then u appears on Pi before last2reach[v, i], or u =
last2reach[v, i]. Therefore u appears on Ri, as desired. ��

This allows us to identify, for every node u, a set of forward propagation links
forward[u], where (v, i) ∈ forward[u] holds for any node v and index i with
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last2reach[v, i] = u. These propagation links are the second ingredient in the
correctness of the decomposition. Once we have computed the correct value at
u, we update the corresponding data structures Ti for all paths i to which u
belongs. We also propagate the query value of Ti in the decomposition (1) for
all nodes v with (v, i) ∈ forward[u]. This means that when we come to process
v, we have already correctly computed all terms in the decomposition (1) and it
suffices to apply the operation

⊕
to these terms.

The next lemma shows how to compute the values last2reach (and, as a
consequence, all forward propagation links), also by dynamic programming.

Lemma 2. Let G = (V,E) be a DAG, and let P1, . . . , PK be a path cover of
G. For every v ∈ V and every i ∈ [1..K], we can compute last2reach[v, i] in
overall time O(K|E|).

Proof. For each Pi and every node v on Pi, let index[v, i] denote the position of
v in Pi (say, starting from 1). Our algorithm actually computes last2reach[v, i]
as the index of this node in Pi. Initially, we set last2reach[v, i] = −1 for all
v and i. At the end of the algorithm, last2reach[v, i] = −1 will hold precisely
for those nodes v that cannot be reached by any node of Pi. We traverse the
nodes in topological order. For every i ∈ [1..K], we do as follows: if v is on Pi,
then we set last2reach[v, i] = index[v, i]. Otherwise, we compute by dynamic
programming last2reach[v, i] as maxu∈N−(v) last2reach[u, i]. ��

An immediate application of Theorem 1 and of the values last2reach[v, i]
is for solving reachability queries. Another simple application is an extension of
the longest increasing subsequence (LIS) problem to labeled DAGs. (Both are
given in the full version of this paper [19]).

The LIS problem, the LCS problem of Sect. 4, as well as co-linear chaining
(CLC) of Sect. 5 make use of the following standard data structure (see e.g. [21,
p.20]).

Lemma 3. The following two operations can be supported with a balanced binary
search tree T in time O(log n), where n is the number of leaves in the tree.

– update(k, val): For the leaf w with key(w) = k, update value(w) = val.
– RMaxQ(l, r): Return maxw : l≤key(w)≤r value(w) (Range Maximum Query).

Moreover, the balanced binary search tree can be built in O(n) time, given the n
pairs (key, value) sorted by component key.

4 The LCS Problem

Consider a labeled DAG G = (V,E, �,Σ) and a sequence S ∈ Σ∗, where Σ is an
ordered alphabet. We say that the longest common subsequence (LCS) between
G and S is a longest subsequence C of any path label in G such that C is also
a subsequence of S.
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We will modify the LIS algorithm (see the full version of this paper [19])
minimally to find a LCS between a DAG G and a sequence S. The description
is self-contained yet, for the interest of page limit, more dense than the LIS
algorithm derivation. The purpose is to give an example of the general MPC-
framework with fewer technical details than required in the main result of this
paper concerning co-linear chaining.

For any c ∈ Σ, let S(c) denote set {j | S[j] = c}. For each node v and
each j ∈ S(�(v)), we aim to store in LLCS[v, j] the length of the longest com-
mon subsequence between S[1..j] and any label of path ending at v, among all
subsequences having �(v) = S[j] as the last symbol.

Assume we have a path cover of size K and forward[u] computed for all u ∈
V . Assume also we have mapped Σ to {0, 1, 2, . . . , |S|+1} in O((|V |+|S|) log |S|)
time (e.g. by sorting the symbols of S, binary searching labels of V , and then
relabeling by ranks, with the exception that, if a node label does not appear in
S, it is replaced by |S| + 1).

Let Ti be a search tree of Lemma 3 initialized with key-value pairs (0, 0),
(1,−∞), (2,−∞), . . . , (|S|,−∞), for each i ∈ [1..K]. The algorithm proceeds
in fixed topological ordering on G. At a node u, for every (v, i) ∈ forward[u]
we now update an array LLCS[v, j] for all j ∈ S(�(v)) as follows: LLCS[v, j] =
max(LLCS[v, j], Ti.RMaxQ(0, j − 1) + 1). The update step of Ti when the algo-
rithm reaches a node v, for each covering path i containing v, is done as
Ti.update(j′, LLCS[v, j′]) for all j′ with j′ < j and j′ ∈ S(�(v)). Initialization
is handled by the (0, 0) key-value pair so that any (v, j) with �(v) = S[j] can
start a new common subsequence.

The final answer to the problem is maxv∈V,j∈S(�(v)) LLCS[v, j], with the
actual LCS to be found with a standard traceback. The algorithm runs in
O((|V | + |S|) log |S| + K|M | log |S|) time, where M = {(v, j) | v ∈ V, j ∈
[1..|S|], �(v) = S[j]}, and assuming a cover of K paths is given. Notice that |M |
can be Ω(|V ||S|). With Theorem 1 plugged in, the total running time becomes
O(k|E| log |V | + (|V | + |S|) log |S| + k|M | log |S|). Since the queries on the data
structures are semi-open, one can use the more efficient data structure from [13]
to improve the bound to O(k|E| log |V | + (|V | + |S|) log |S| + k|M | log log |S|).
The following theorem summarizes this result.

Theorem 2. Let G = (V,E, �,Σ) be a labeled DAG of width k, and let S ∈ Σ∗,
where Σ is an ordered alphabet. We can find a longest common subsequence
between G and S in time O(k|E| log |V | + (|V | + |S|) log |S| + k|M | log log |S|).

When G is a path, the bound improves to O((|V |+|S|) log |S|+|M | log log |S|),
which nearly matches the fastest sparse dynamic programming algorithm for the
LCS on two sequences [10] (with a difference in log log-factor due to a different
data structure, which does not work for this order of computation).

5 Co-linear Chaining

We start with a formal definition of the co-linear chaining problem (see Fig. 2
for an illustration), following the notions introduced in [21, Sect. 15.4].
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T

R

Fig. 2. In the co-linear chaining problem between two sequences T and R, we need
to find a subset of pairs of intervals (i.e., anchors) so that (i) the selected intervals
in each sequence appear in increasing order; and (ii) the selected intervals cover in R
the maximum amount of positions. The figure shows an input for the problem, and
highlights in gray an optimal subset of anchors. Figure taken from [21].

Problem 1 (Co-linear chaining (CLC)). Let T and R be two sequences over an
alphabet Σ, and let M be a set of N pairs ([x..y], [c..d]). Find an ordered subset
S = s1s2 · · · sp of pairs from M such that

– sj−1.y < sj .y and sj−1.d < sj .d, for all 1 ≤ j ≤ p, and
– S maximizes the ordered coverage of R, defined as

coverage(R,S) = |{i ∈ [1..|R|] | i ∈ [sj .c..sj .d] for some 1 ≤ j ≤ p}|.

The definition of ordered coverage between two sequences is symmetric, as we
can simply exchange the roles of T and R. But when solving the CLC problem
between a DAG and a sequence, we must choose whether we want to maximize
the ordered coverage on the sequence R or on the DAG G. We will consider the
former variant.

First, we define the following precedence relation:

Definition 1. Given two paths P1 and P2 in a DAG G, we say that P1 precedes
P2, and write P1 ≺ P2, if one of the following conditions holds:

– P1 and P2 do not share nodes and there is a path in G from the endpoint of
P1 to the startpoint of P2, or

– P1 and P2 have a suffix-prefix overlap and P2 is not fully contained in P1;
that is, if P1 = (a1, . . . , ai) and P2 = (b1, . . . , bj) then there exists a k ∈
{max(1, 2 + i − j), . . . , i} such that ak = b1, ak+1 = b2, . . . , ai = b1+i−k.

We then extend the formulation of Problem1 to handle a sequence and a DAG.

Problem 2 (CLC between a sequence and a DAG). Let R be a sequence, let G
be a labeled DAG, and let M be a set of N pairs (P, [c..d]), where P is a path
in G and c ≤ d are non-negative integers. Find an ordered subset S = s1s2 · · · sp

of pairs from M such that
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– for all 2 ≤ j ≤ p, it holds that sj−1.P ≺ sj .P and sj−1.d < sj .d, and
– S maximizes the ordered coverage of R, analogously defined as
coverage(R,S) = |{i ∈ [1..|R|] | i ∈ [sj .c..sj .d] for some 1 ≤ j ≤ p}|.

To illustrate the main technique of this paper, let us for now only seek solu-
tions where paths in consecutive pairs in a solution do not overlap in the DAG.
Suffix-prefix overlaps between paths turn out to be challenging; we prove this
case in the full version of this paper [19].

Problem 3 (Overlap-limited CLC between a sequence and a DAG). Let R be a
sequence, let G be a labeled DAG, and let M be a set of N pairs (P, [c..d]), where
P is a path in G and c ≤ d are non-negative integers (with the interpretation
that �(P ) matches R[c..d]). Find an ordered subset S = s1s2 · · · sp of pairs from
M such that

– for all 2 ≤ j ≤ p, it holds that there is a non-empty path from the last node
of sj−1.P to the first node of sj .P and sj−1.d < sj .d, and

– S maximizes coverage(R,S).

First, let us consider a trivial approach to solve Problem3. Assume we have
ordered in O(|E| + N) time the N input pairs as M [1],M [2], . . . ,M [N ], so that
the endpoints of M [1].P,M [2].P, . . . ,M [N ].P are in topological order, breaking
ties arbitrarily. We denote by C[j] the maximum ordered coverage of R[1..M [j].d]
using the pair M [j] and any subset of pairs from {M [1],M [2], . . . ,M [j − 1]}.

Theorem 3. Overlap-limited co-linear chaining between a sequence and a
labeled DAG G = (V,E, �,Σ) (Problem 3) on N input pairs can be solved in
O((|V | + |E|)N) time.

Proof. First, we reverse the edges of G. Then we mark the nodes that corre-
spond to the path endpoints for every pair. After this preprocessing we can start
computing the maximum ordered coverage for the pairs as follows: for every pair
M [j] in topological order of their path endpoints for j ∈ {1, . . . , N} we do a
depth-first traversal starting at the startpoint of path M [j].P . Note that since
the edges are reversed, the depth-first traversal checks only pairs whose paths
are predecessors of M [j].P .

Whenever we encounter a node that corresponds to the path endpoint of a
pair M [j′], we first examine whether it fulfills the criterion M [j′].d < M [j].c (call
this case (a)). The best ordered coverage using pair M [j] after all such M [j′] is
then

Ca[j] = max
j′ : M [j′].d<M [j].c

{C[j′] + (M [j].d − M [j].c + 1)}, (2)

where C[j]′ is the best ordered coverage when using pairs M [j′] last.
If pair M [j′] does not fulfill the criterion for case (a), we then check whether

M [j].c ≤ M [j′].d ≤ M [j].d (call this case (b)). The best ordered coverage using
pair M [j] after all such M [j′] with M [j′].c < M [j].c is then

Cb[j] = max
j′ : M [j].c≤M [j′].d≤M [j].d

{C[j′] + (M [j].d − M [j′].d)}. (3)
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Inclusions, i.e. M [j].c ≤ M [j′].c, can be left computed incorrectly in Cb[j], since
there is a better or equally good solution computed in Ca[j] or Cb[j] that does
not use them [1].

Finally, we take C[j] = max(Ca[j], Cb[j]). Depth-first traversal takes O(|V |+
|E|) time and is executed N times, for O((|V | + |E|)N) total time. ��

However, we can do significantly better than O((|V | + |E|)N) time. In the
next sections we will describe how to apply the framework from Sect. 3 here.

5.1 Co-linear Chaining on Sequences Revisited

We now describe the dynamic programming algorithm from [1] for the case of
two sequences, as we will then reuse this same algorithm in our MPC approach.

First, sort input pairs in M by the coordinate y into the sequence M [1], M [2],
. . . , M [N ], so that M [i].y ≤ M [j].y holds for all i < j. This will ensure that we
consider the overlapping ranges in sequence T in the correct order. Then, we fill
a table C[1..N ] analogous to that of Theorem3 so that C[j] gives the maximum
ordered coverage of R[1..M [j].d] using the pair M [j] and any subset of pairs from
{M [1],M [2], . . . ,M [j − 1]}. Hence, maxj C[j] gives the total maximum ordered
coverage of R.

Consider Eq. (2) and (3). Now we can use an invariant technique to convert
these recurrence relations so that we can exploit the range maximum queries of
Lemma 3:

Ca[j] = (M [j].d − M [j].c + 1) + max
j′ : M [j′].d<M [j].c

C[j′]

= (M [j].d − M [j].c + 1) + T .RMaxQ(0,M [j].c − 1),
Cb[j] = M [j].d + max

j′ : M [j].c≤M [j′].d≤M [j].d
{C[j′] − M [j′].d}

= M [j].d + I.RMaxQ(M [j].c,M [j].d),
C[j] = max(Ca[j], Cb[j]).

For these to work correctly, we need to have properly updated the trees T and
I for all j′ ∈ [1..j − 1]. That is, we need to call T .update(M [j′].d, C[j′]) and
I.update(M [j′].d, C[j′] − M [j′].d) after computing each C[j′]. The running time
is O(N log N).

Figure 2 illustrates the optimal chain on our schematic example. This chain
can be extracted by modifying the algorithm to store traceback pointers.

Theorem 4 ([1,32]). Problem 1 on N input pairs can be solved in the optimal
O(N log N) time.

5.2 Co-linear Chaining on DAGs Using a Minimum Path Cover

Let us now modify the above algorithm to work with DAGs, using the main
technique of this paper.
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Theorem 5. Problem 3 on a labeled DAG G = (V,E, �,Σ) of width k and a set
of N input pairs can be solved in time O(k|E| log |V | + kN log N) time.

Proof. Assume we have a path cover of size K and forward[u] computed for all
u ∈ V . For each path i ∈ [1..K], we create two binary search trees Ti and Ii.
As a reminder, these trees correspond to coverages for pairs that do not, and do
overlap, respectively, on the sequence. Moreover, recall that in Problem3 we do
not consider solutions where consecutive paths in the graph overlap.

As keys, we use M [j].d, for every pair M [j], and additionally the key 0. The
value of every key is initialized to −∞.

After these preprocessing steps, we process the nodes in topological order, as
detailed in Algorithm1. If node v corresponds to the endpoint of some M [j].P ,
we update the trees Ti and Ii for all covering paths i containing node v. Then we
follow all forward propagation links (w, i) ∈ forward[v] and update C[j] for each
path M [j].P starting at w, taking into account all pairs whose path endpoints are
in covering path i. Before the main loop visits w, we have processed all forward
propagation links to w, and the computation of C[j] has taken all previous pairs
into account, as in the naive algorithm, but now indirectly through the K search
trees. Exceptions are the pairs overlapping in the graph, which we omit in this
problem statement. The forward propagation ensures that the search tree query
results are indeed taking only reachable pairs into account. While C[j] is already
computed when visiting w, the startpoint of M [j].P , the added coverage with
the pair is updated to the search trees only when visiting the endpoint.

There are NK forward propagation links, and both search trees are queried
in O(log N) time. All the search trees containing a path endpoint of a pair are
updated. Each endpoint can be contained in at most K paths, so this also gives
the same bound 2NK on the number of updates. With Theorem1 plugged in, we
have K = k and the total running time becomes O(k|E| log |V | + kN log N). ��

6 Discussion and Experiments

For applying our solutions to Problem2 in practice, one first needs to find the
alignment anchors. As explained in the problem formulation, alignment anchors
are such pairs (P, [c..d]) where P is a path in G and �(P ) matches R[c..d].
With sequence inputs, such pairs are usually taken to be maximal exact matches
(MEMs) and can be retrieved in small space in linear time [4,5]. It is largely an
open problem how to retrieve MEMs between a sequence and a DAG efficiently:
The case of length-limited MEMs is studied in [33], based on an extension of
[34] with features such as suffix tree functionality. On the practical side, anchor
finding has already been incorporated into tools for conducting alignment of a
sequence to a DAG [20,25].

For the purpose of demonstrating the efficiency of our MPC-approach applied
to co-linear chaining, we implemented a MEM-finding routine based on simple
dynamic programming. We leave it for future work to incorporate a practi-
cal procedure (e.g. like those in [20,25]). We tested the time improvement of
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Algorithm 1. Co-linear chaining between a sequence and a DAG using a
path cover.
Input: DAG G = (V,E), a path cover P1, P2, . . . , PK of G, and N pairs

M [1],M [2], . . . ,M [N ] of the form (P, [c..d]).
Output: The index j giving maxj C[j].
Use Lemma 2 to find all forward propagation links;
for i ← 1 to K do

Initialize search trees Ti and Ii with keys M [j].d, 1 ≤ j ≤ N , and with key
0, all keys associated with values −∞;
Ti.update(0, 0);
Ii.update(0, 0);

/* Save to start[i] (respectively, end[i]) the indexes of all pairs

whose path starts (respectively, ends) at i. */

for j ← 1 to N do
start[M [j].P.first].push(j);
end[M [j].P.last].push(j);

for v ∈ V in topological order do
for j ∈ end[v] do

/* Update the search trees for every path that covers v,
stored in paths[v]. */

for i ∈ paths[v] do
Ti.update(M [j].d, C[j]);
Ii.update(M [j].d, C[j] − M [j].d);

for (w, i) ∈ forward[v] do
for j ∈ start[w] do

Ca[j] ← (M [j].d − M [j].c + 1) + Ti.RMaxQ(0,M [j].c − 1);
Cb[j] ← M [j].d + Ii.RMaxQ(M [j].c,M [j].d);
C[j] ← max(C[j], Ca[j], Cb[j]);

return argmaxj C[j];

our MPC-approach (Theorem 5) over the trivial algorithm (Theorem3) on the
sequence graphs of annotated human genes. Out of all the 62219 genes in the
HG38 annotation for all human chromosomes, we singled out 8628 genes such
that their sequence graph had at least 5000 nodes. Out of these, we picked 500
genes at random.

The size of the graphs for these 500 genes varied between |V | = 5023 and
|V | = 30959 vertices. Their width, i.e., the number of paths in the MPC, varied
between k = 1 and k = 15. (The number of graphs for each value of k is listed
in the column #graphs of the top table of Fig. 3.) The number of anchors, N ,
for patterns of length 1000 varied between 101 and 105. As shown in Fig. 3, with
small values of N , our MPC-based co-linear chaining algorithm was twice as fast
as the trivial algorithm. When values of N were increased from 101 to 105, the
difference increased to two orders of magnitude.
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k #graphs mean |V | MPC method Naive method
1 75 7275 18 ± 27ms 5638 ± 12378ms
2 117 8109 23 ± 36ms 6355 ± 17641ms
3 93 8306 27 ± 41ms 6499 ± 17940ms
4 99 8933 32 ± 49ms 6864 ± 17868ms
5 48 9779 40 ± 59ms 8053 ± 18742ms
6 32 10265 45 ± 65ms 7934 ± 16659ms
7 16 9928 41 ± 59ms 6973 ± 15345ms
8 10 11052 57 ± 83ms 8731 ± 17497ms
9 4 9538 52 ± 77ms 6252 ± 13906ms

10 3 10833 61 ± 102ms 7055 ± 16221ms
11 2 11186 50 ± 70ms 5932 ± 10548ms
15 1 16848 154 ± 194ms 25253 ± 43873ms

N mean |V | MPC method Naive method
(100..101] 8681 8 ± 5ms 15 ± 8ms
(101..102] 8808 8 ± 5ms 79 ± 68ms
(102..103] 9732 10 ± 7ms 524 ± 392ms
(103..104] 6824 70 ± 22ms 15153 ± 5875ms
(104..105] 12235 153 ± 66ms 49482 ± 31900ms

Fig. 3. The average running times, and their standard deviation, (in milliseconds) of
the two approaches for co-linear chaining between a sequence and a DAG (Problem 2),
for all inputs of a certain width k (top), and with N belonging to a certain interval
(below). Both approaches are given the same anchors; the time for finding them is not
included.

The improved efficiency when compared to the naive approach gives rea-
son to believe a practical sequence-to-DAG aligner can be engineered along the
algorithmic foundations given here. Future work includes the incorporation of
a practical anchor-finding method, and testing whether the complete scheme
improves transcript prediction through improved finding of exon chains [18,30].

On the theoretical side, it remains open whether the MPC algorithm could
benefit from a better initial approximation and/or one that is faster to compute.
More generally, it remains open whether the overall bound O(k|E| log |V |) for
the MPC problem can be improved.
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Abstract. Protein structure alignment is a classic problem of com-
putational biology, and is widely used to identify structural and func-
tional similarity and to infer homology among proteins. Previously a
statistical model for protein structural evolution has been introduced
and shown to significantly improve phylogenetic inferences compared to
approaches that utilize only amino acid sequence information. Here we
extend this model to account for correlated evolutionary drift among
neighboring amino acid positions, resulting in a spatio-temporal model
of protein structure evolution. The result is a multivariate diffusion pro-
cess convolved with a spatial birth-death process, which comes with lit-
tle additional computational cost or analytical complexity compared to
the site-independent model (SIM). We demonstrate that this extended,
site-dependent model (SDM) yields a significant reduction of bias in esti-
mated evolutionary distances and helps further improve phylogenetic tree
reconstruction.

Keywords: Protein structure · Evolution · Dynamic programming
Phylogeny · Diffusion process

1 Introduction

Protein alignment is an integral part of bioinformatic analyses and is a classic,
widely studied problem in computational biology. Existing methods for align-
ing two or more proteins compare amino acid sequences and/or structures of the
proteins, and encompass a variety of algorithms with different strengths and pur-
poses. Such algorithms are a fundamental part of phylogenetic research in par-
ticular, where the degree and nature of evolutionary divergence between species
is a quantity of interest. Alignment procedures that are widely used in studies of
protein evolution are based only on the amino acid sequence and do not incor-
porate the tertiary (three-dimensional) structure of the proteins. Methods that
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do incorporate tertiary structure, such as those mentioned in [1], do not account
for the evolution over time of those structures. Recently Challis and Schmidler
[2] introduced a stochastic evolutionary model of protein sequence and structure
for this purpose; however, their approach, like the vast majority of alignment
algorithms, assumes that “sites” (individual amino acid characters, or backbone
atom coordinate triples) evolve independently of one other. This assumption is
well-known to be violated since amino acid identities and spatial locations are
highly dependent due to a combination of physico-chemical constraints and inter-
actions, including bond lengths and excluded volume, hydrophobic and electro-
static attraction and repulsion, hydrogen bonding, and other cooperative effects
in forming stable local and global protein structure. Nevertheless, alignment algo-
rithms based on both sequence and structural information typically ignore the
correlations induced by these interactions. Ignoring dependence is often justified
by the computational intractability of site-dependent models [2,3]. In this paper
we demonstrate that in structure-based alignment, as in sequence-based, ignor-
ing site dependence systematically biases evolutionary inference. We present an
expanded version of the Challis and Schmidler model which incorporates neigh-
bor dependence without sacrificing computational tractability.

1.1 Motivation

Von Haeseler and Schöniger [4] examined the effect of site dependence on esti-
mates of evolutionary distance between pairs of biological sequences. Using a
model of whale mitochondrial DNA evolution whereby the sequence evolves as a
collection of independent subsequences, each exhibiting Markovian dependence
among its amino acids, the authors demonstrated the tendency to underesti-
mate the true evolutionary distance between two sequences when using a site-
independent model. Figure 1a replicates this effect using binary sequences from
a nearest-neighbor site-dependent sequence model which does not assume inde-
pendent subsequences, described in the Appendix A.2. When estimating the
divergence time for these sequences under a site-independent version of the same
model (b = 1 for model in Appendix A.2), the posterior distribution (Fig. 1a)
shows significant underestimation of the true value.

Despite a variety of efforts, no site-dependent sequence model has emerged as
a widely applicable replacement for commonly used site-independent sequence
models [5]. The primary hurdle to doing so is computational - adding realistic
dependence generally prohibits the use of efficient alignment algorithms which
rely on dynamic programming.

On the other hand, we demonstrate in Sect. 2 that the site-independent struc-
tural model (SIM) of [2] can be extended to a site-dependent structural model
(SDM), incorporating site dependence while maintaining the same interpretabil-
ity and mathematical and computational tractability as the SIM. Thus we can
incorporate dependence into the evolutionary structural part of the model in a
relatively straightforward way. Using data simulated from the SDM, we find a
systematic underestimation effect for structural data due to the independent-
site assumption, similar to that observed in sequences (Fig. 1e). The new SDM
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Fig. 1. (a) Posterior distribution of evolutionary distance for sequences simulated under
site-dependent model with b = 2, t = 0.6 (see Sect. A.2), when inference is performed
under an assumption of site independence. Significant underestimation is seen rela-
tive to truth (vertical line). (b, c, d) This underestimation adversely affects phylo-
genetic reconstruction, as seen by comparing the true (b) and estimated trees under
independent- (d) and dependent-site (c) models. (e) A similar effect is seen for 3D
structures, with data simulated under the site-dependent model of Sect. 2.4.

can then be paired with a sequence evolution model to provide a site-dependent
expansion of the joint sequence-structure model of Challis and Schmidler [2].

The paper is organized as follows. We briefly review the site-independent
structural diffusion model of [2], before describing the general form of a depen-
dent structural diffusion model. Section 2 describes the details of incorporating
dependence into the model, with computational tractability being the key con-
straint on the model’s form. Section 3 describes a reparameterization of the SDM
necessary for analyzing the SDM’s effect on phylogenetic inference. Section 4
revisits the motivating example above and compares inferences and phylogenies
from the expanded model on a number of real protein examples.

2 A Site-Dependent Structural Diffusion Model

Challis and Schmidler [2] introduced a stochastic model for protein structure
evolution, extending a previously developed probabilistic framework for struc-
tural alignment of proteins [6,7] into a model suitable for the study of molecular
evolution. This work demonstrated the ability to significantly improve phylo-
genetic inference when structural information about the proteins is available
[2,3]. We briefly review the original Challis-Schmidler model before introducing
our extended model incorporating site dependence. Throughout the paper, these
structural models will be referred to as the SIM and SDM respectively.

2.1 Challis-Schmidler Model

Challis and Schmidler [2] model the diffusion of individual Cα backbone positions
in space, over time, via an Ornstein-Uhlenbeck (OU) process. Independence is
assumed between each site along the backbone as well as between the (x, y, z)
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coordinates at each site, leading to the joint structure diffusion being modeled
as a product of 3n independent univariate OU processes:

dC
(t)
ij = θ(ζj − C

(t)
ij )dt + σdB (1)

where C
(t)
ij denotes coordinate j ∈ {x, y, z} of α-carbon i at time t. This setup

admits tractable stationary and conditional distributions but, as noted by Challis
and Schmidler, fails to account for known biophysical interactions which lead to
strong observed dependence between sites, such as bond length constraints and
the effect of excluded volume in the protein. Although a protein structure’s
coordinate frame is arbitrarily determined by the experiment, we assume the
two structures in our pairwise analyses share a coordinate frame; thus for a
pair of structures CX , CY , we assume the coordinate frame of CX and do not
distinguish between CY and any rigid body rotation R and translation η thereof.
We refer the reader to [2] for a detailed treatment of this issue, and for various
other model details omitted here.

2.2 Dependence in a Multivariate Ornstein-Uhlenbeck Process

The independent site model (1) can be written as a multivariate diffusion in the
form

dC = −Θ(C − ζ)dt + LdBt (2)

where Θ and Σ = LL′ are both assumed to be identity matrices. Here the
3n × 1 vector C = (Cx, Cy, Cz) contains the backbone α-carbon coordinates, ζ is
the 3n× 1 long-term mean vector, and Bt represents 3n independent univariate
standard Brownian motion terms. Writing the model in this form makes clear
that the assumption of site- (and coordinate-) independence can be relaxed by
introduction of general Θ and Σ, enabling a more expressive model. For conve-
nience we factor Θ = Σd ⊗ Θp and Σ = Σd ⊗ Σp as Kronecker products,
allowing coordinate dependence (subscript d) and backbone site dependence
(subscript p) to be modeled separately.

For purposes of the current paper we set Σd = I3 allowing the x, y, z dimen-
sions within an individual site to diffuse independently of each other. Observed
data suggest that dependence between diffusion in the (x, y, z) dimensions is not
strong: Table 1 shows average sample correlations between spatial dimensions
for 549 structures comprised of a group of globins and a large group from the
manually curated MALIDUP database [8], as well as sample lag-1 autocorre-
lations (i.e. correlations between consecutive backbone α-carbons) within each
spatial dimension. Although some proteins show weak to moderate correlation
between spatial dimensions, the averages indicate the correlation is relatively
weak compared to the strong autocorrelation along the backbone within a given
spatial dimension. Consequently, we focus on incorporating dependence along
the backbone rather than among spatial dimensions x, y, z.

Under the SDM then, the joint evolution of the 3n scalar coordinates spec-
ifying all n backbone positions follows a multivariate OU process governed by
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Table 1. Mean sample correlations between dimensions and mean lag-1 autocorrela-
tions along dimensions for 71 globin and 478 MALIDUP protein structures.

lag-1 autocorrelation correlation

x y z (x,y) (x,z) (y,z)

globins 0.95 0.95 0.95 −0.01 0.00 0.01

MALIDUP 0.93 0.93 0.93 0.01 0.02 −0.02

3n × 3n matrix-valued parameters Θ and Σ. This model introduces site depen-
dence while preserving the analytical tractability of the conditional and limit-
ing distributions of the process, important properties for phylogenetic inference.
Under the diffusion process defined by the stochastic differential equation in (2),
the joint distribution of C(t) (the full coordinate set at time t) conditional on
C(s) is multivariate normal:

P (C(t)|C(s)) ∼ N
(
e−ΘτC(s) + (I − e−Θτ )ζ, Στ

)
(3)

with τ denoting the time difference (t − s) and with conditional covariance Στ

given by

vec(Στ ) = (Θ ⊕ Θ)−1
(
I − e−(Θ⊕Θ )τ

)
vec(Σ) (4)

where vec() is the linear operator converting a matrix into a column vector.
Letting τ → ∞ in the conditional mean and covariance gives the stationary
distribution

P (C) ∼ N (ζ, Σ∞) (5)

where the stationary covariance Σ∞ is expressed as

vec(Σ∞) = (Θ ⊕ Θ)−1vec(Σ). (6)

Although these closed-form solutions exist for general Σp,Θp, they are in
general not computationally tractable when convolved with the indel process
of the evolutionary model from [2] (i.e. the Links model of [9]) because the
conditional independence required for dynamic programming is not preserved.
To maintain computational tractability in phylogenetic applications, we require
forms of Θp and Σp for which both the conditional and stationary distributions
of the multivariate OU exhibit certain conditional independencies, as described
in the next section.

2.3 Computational Tractability in Phylogenetic Models

Common uses of evolutionary models, in phylogenetic or homology detection
contexts, require the ability to optimize or average over the set of possible align-
ments. In a Bayesian or maximum likelihood context, the alignment must be
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inferred simultaneously with the other parameters. Because of the (exponen-
tially large) size of the alignment space, algorithmic efficiency considerations
in these calculations play a key role. In particular, calculating the joint likeli-
hood p(X,Y ) of two structures X and Y marginalized over all possible align-
ments M is possible in site-independent models by use of dynamic programming
(the so-called forward algorithm for pair hidden Markov models (HMMs); see
[10]). These algorithms depend on conditional independence properties of the
(marginal) likelihood of the backbone coordinates at a single backbone site given
all previous backbone sites:

P (CX
ij , CY

ij | CX
1j , C

X
2j , . . . , C

X
(i−1)j , C

Y
1j , C

Y
2j , . . . , C

Y
(i−1)j) = P (CX

ij , CY
ij ) (7)

with X and Y denoting ancestor and descendant structures respectively. Mod-
els with long-range dependence among sites, including the dependent diffusion
model (2) with general Θ,Σ = LL′, do not exhibit these conditional indepen-
dence relationships and therefore prohibit the recursive decomposition which
forms the basis of efficient dynamic programming calculations. Since an evolu-
tionary model without efficient alignment algorithms is far too expensive to use
in the context of phylogenetic tree inference, we desire a model that incorpo-
rates site dependence while still preserving sufficient conditional independence
structure to permit use of a forward-type algorithm.

2.4 Constructing a Dependent Structural Diffusion Model

A natural approach to introducing limited neighbor dependence into the diffu-
sion model is to consider the backbone sites’ coordinates as a series of nodes
with forces acting upon each pair of neighboring sites, for example as in a
ball and spring model. Figure 2 shows a general ball and spring model with
spring constants kij . This model corresponds to a probability distribution for the
equilibrium positions of the backbones coordinates which has precision matrix
Σ−1 = (bij) where bij = bji, bii = ki−1,i + ki,i+1 and bij = 0 for |i − j| > 1.

k01
C1

k12
C2

k23

...
kn−1,n

Cn
kn,n+1

Fig. 2. General ball and spring model for n backbone positions.

The corresponding Gaussian model with neighbor dependence is a spatial
first-order auto-regressive process, denoted AR(1). However, setting the spring
matrix equal to an AR(1) precision matrix gives a set of equations for the spring
constants kij with no solution. We therefore instead approach the problem of
incorporating dependence by starting with a general Θ and Σ and determining
what specific forms will correspond to an AR(1) process along the backbone.

We used symbolic algebra software to assist in solving for general matrices
Θp and symmetric, positive definite Σp such that the constraints Λτ (i, j) =
Λ∞(i, j) = 0 ∀i, j : |i − j| > 1 are satisfied for conditional and stationary
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precision matrices Λτ , Λ∞. Solutions to low-dimensional problems allowed us to
identify the general form for a single pair of suitable Θp,Σp. For five backbone
positions this nearest-neighbor SDM takes the form:

Θp = θ

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
ρ 1 − ρ2 0 0 0
ρ2 −ρ3 1 0 0
ρ3 −ρ4 0 1 0
ρ4 −ρ5 0 0 1

⎞
⎟⎟⎟⎟⎠

Σp = σ2

⎛
⎜⎜⎜⎜⎝

1 aρ aρ2 aρ3 aρ4

aρ 1 ρ ρ2 ρ3

aρ2 ρ 1 ρ ρ2

aρ3 ρ2 ρ 1 ρ
aρ4 ρ3 ρ2 ρ 1

⎞
⎟⎟⎟⎟⎠

(8)

where a = (3 − ρ2)/2. The conditional and stationary distributions given by
(3) and (5) have tri-diagonal precision matrices. Thus dynamic programming is
preserved, albeit with some modification to the standard pair HMM recursion
formulas required as described in Sect. 2.5.

Similar computer algebra experiments were used to demonstrate that no such
solutions exist for any diffusion of the form (2) where Σp = I. With Θ = I3 ⊗Θp

and Σ = I3⊗Σp, (3-6) give the marginal or conditional distributions for matched
positions.

2.5 Dynamic Programming

The recursive equations used for the pair hidden Markov model underlying the
SIM [10] require several modifications in order to be used with the SDM. These
modifications are specific to the form of Θ and Σ = LL′ chosen for the structural
diffusion parameters. The primary reason for the changes is that the backbone
coordinate emission probabilities in the SIM are independent of neighboring sites,
whereas in the SDM the emission probabilities depend on neighboring sites. The
details of the changes required to the dynamic programming algorithm are given
in Appendix A.1.

2.6 Bayesian Inference for the Site-Dependent Model

Under the new site-dependent model specified by (2, 8), the joint distribution
p(X,Y |M) of backbone coordinates for ancestor X and descendant Y given any
alignment M can be expressed

p(X, Y |M) =
∏

m∈M

p(X[m], Y[m]|m,Nm)
∏

d∈D

p(X[d], Y[d]|d,Nd)
∏

i∈I

p(X[i], Y[i]|i,Ni)

(9)

where M,D, and I respectively are the sets of matched, deleted, and inserted
sites in M. X[m] denotes the backbone coordinates of the positions of X aligned
in m ∈ M , and Ni is the set of backbone positions neighboring position i. In
other words p(X,Y |M) can be expressed in a decomposed form, each factor
of which is either the joint density for a contiguous block of matches given its
neighbors or the density of an insertion or deletion distribution for a particular
site given its neighbors.
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Bayesian inference based on this joint distribution (and that including indels)
uses priors and sampling techniques detailed in [2] with trivial additions to
accommodate priors and sampling for the model’s dependence parameter ρ.

3 Joint Sequence-Structure Model for Phylogenetic
Inference

Phylogenetic inference involves constructing a phylogenetic tree using estimates
of the evolutionary distance between proteins, or equivalently models of the time-
dependent evolution. Traditionally this is done using site-independent sequence
evolution models parameterized by a matrix Q of relative substitution rates,
defining a likelihood over the time τ over which evolution occurs. The joint
sequence-structure evolution model introduced by [2] multiplies this likelihood
by one derived similarly from the time-dependent structure diffusion process
(SIM) given by (1), allowing both structural and sequence differences to inform
the estimation of divergence time τ .

3.1 Amino Acid Sequence Model

The sequence portion of our joint sequence and structure model is identical to
that used in [2], where the joint likelihood for the two sequences SX , SY and an
alignment M between them is given by

p(SX , SY ,M|λ, μ, τ,Q) = P (SX , SY |M, τ,Q)P (M|λ, μ, τ) (10)

= P (SY
M |SX

M , τ,Q)P (SY
M̄ |π) × P (SX |π)P (M|λ, μ, τ)

where SX
M , SY

M denote the matched (aligned) positions of the amino acid
sequences SX and SY , SY

M̄
the unmatched positions of SY , Q the substitu-

tion rate matrix, and π the equilibrium distribution of amino acid labels. The
probabilities P (SY

M |SX
M , τ,Q) are given by a product of independent substitution

probabilities at each site via the transition probability matrix eQτ . P (SY
M̄

|π) and
P (SX |π) are given by the equilibrium distribution π, and we refer the reader to
[2] for a discussion of the Links indel model which specifies P (M|λ, μ, τ).

3.2 Site-Dependent Random Effect Model

In a sequence evolution model (10), only the product Qτ is identifiable - one can-
not simultaneously estimate absolute rates and τ itself. As a result, it is standard
to scale the substitution rate matrix Q to a single expected substitution per unit
time [11]. As a result, the time τ is interpreted as the expected number of substi-
tutions per site, which can be estimated from sequences. The structural model
exhibits a similar identifiability issue: in pairwise estimation with a structure-
only model, with neither rate θ nor time τ fixed, only the structural distance θτ
would be identifiable. In the Challis-Schmidler model this was not thought to
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be a concern, since when the joint model is used τ becomes determined by the
sequence information, making θ identifiable as well.

However this means that disagreement between the structural evolution
model and sequence evolution model regarding the divergence time τ will be
resolved by compensation in the estimate of θ. Because we do not currently
have a computationally tractable site-dependent sequence evolution model, we
do not wish the information in the structural SDM to be overridden by the
site-independent sequence model, which we know to be susceptible to underes-
timation. We address this by introducing a distinct sequence time Qτ = τq and
structural time τs related by a stochastic model. This differs from the approach
of [2,3], which assumed a common time shared by both structural and sequence
components of the likelihood.

The importance of distinguishing these two quantities is highlighted by the
plot in Fig. 3, where we estimated divergence time separately using the sequence-
only model of (10) and the independent structure-only model (see e.g. [2]) for
a set of globins. There is a strong, arguably linear relationship between the
structure-only evolutionary distance θτ and the sequence-only evolutionary dis-
tance τ , but the relationship between them is clearly noisy. Forcing the two
models to share a common parameter ignores the different amounts of infor-
mation and uncertainty provided about the evolutionary distance by sequence
and structural data. The sequence-only and structure-only phylogenetic trees
are shown as well, where we see the implications for tree topology.
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Fig. 3. Pairwise sequence-only distance (τq) and structure-only distance (θτs) estimates
from a set of 24 globin proteins under the SIM. The estimates are plotted against each
other in panel (b) with the respective phylogenetic tree estimates (via neighbor-joining)
in panels (a) and (c). In panel (b), we excluded pairs whose sequence distances could
not be reliably estimated due to high sequence divergence.

Instead, we introduce a random effect model defining a stochastic linear rela-
tionship between sequence and structure distances:

(θτs) = βτq + ε where ε ∼ N(0, ω2). (11)
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Here τs, τq are the structural and sequence divergence times respectively. A sim-
ple linear regression gives β̂ = 0.005 and an estimate for ω. Under this formula-
tion, the sequence model is now given by

p(SX , SY ,M|λ, μ, τq, Q) = P (SX , SY |M, τq, Q)P (M|λ, μ, τq) (12)

= P (SY
M |SX

M , τq, Q)P (SY
M̄ |π) × P (SX |π)P (M|λ, μ, τq)

and the PDE governing the structural diffusion is

dC = −Θ(C − ζ)dts + LdBt(s) . (13)

To ensure the structure distance variable τs is on a similar scale to τq, in each
pairwise estimation under this model we fix θ at its posterior mean under the
SIM. Hereafter we refer to this joint sequence and structure model with random
effect as the SDMre.

4 Results

All inferences were performed on the Duke Computer Cluster (DCC), a het-
erogeneous network of shared computing nodes; a typical node CPU is an Intel
Xeon 2.6 GHz. Average runtimes for the SIM range from 20-60 iterations per sec-
ond depending primarily on the length of the proteins, while SDM computations
are roughly an order of magnitude slower than the SIM. All model parameters
were sampled via random-walk Metropolis Hastings, augmented with a library
sampling step for rotation parameter R as described in [2].

4.1 Improved Estimation of Evolutionary Distances

We first revisit the example of underestimation in the SIM, shown in Fig. 1(e).
The left panel of Fig. 4 shows the posteriors from both the site-independent
and site-dependent models. We see again that the SIM underestimates the true
evolutionary distance, while the SDM corrects for this.

While this is not surprising on data simulated from the SDM, similar results
are observed on real data for which the ‘true’ distance is unknown. The four
plots at right in Fig. 4 compare the SIM and SDM posterior distributions for
structural distance θτ between two pairs of cysteine proteinases from [3] (top
row) and two pairs of globins (human-turtle and human-lamprey, bottom row).
In each pairwise estimation, the SIM is significantly underestimating structural
distance relative to the SDM. This result is consistently observed across the
other pairs of globins and cysteine proteinase pairs from [2,3] (results omitted for
brevity). In each case the SDM posterior is somewhat more diffuse, presumably
due to the lower effective sample size in the structural information induced by
dependence in the structural model. Although the ‘true’ distances for these pairs
cannot be known, these results strongly suggest that including site dependence
in the structural model can significantly reduce systematic bias in the estimated
evolutionary distances.
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Fig. 4. Estimation of evolutionary distance using SIM (light) and SDM (dark), for
(a) simulated data with known true distance, and (b) real data from two cysteine pro-
teinase pairs (b, top row) and two globins (b, bottom row). In all cases the SIM estimate
is significantly lower than the SDM estimate, strongly suggesting systematic underes-
timation under the SIM assumption. Simulation parameters: σ2 = 1, θ = 0.002, t =
0.1, ρ = 0.95.

Non-neighbor dependence: Proteins exhibit significant non-neighbor dependen-
cies due to shared environments and physico-chemical interactions between
amino acids that are distant in sequence but proximal in space. Simulations
were run using general (non-banded) covariance matrices to simulate structural
evolution with long-range correlations, with the SDM then used to estimate
evolutionary distance. The results (omitted for brevity) are very similar to the
left panel of Fig. 4: the SIM noticeably underestimates the true structural dis-
tance while the SDM accurately estimates it. This indicates the robustness of
the nearest-neighbor approximation, required for efficient computation, to more
general dependency patterns.

4.2 Effect on Phylogeny of Ignoring Structural Dependence
in Globin Structures

Errors in estimation of pairwise evolutionary distances have the potential to
undermine phylogenetic inference as well. To explore this, we compare phyloge-
netic trees reconstructed via neighbor-joining for a group of 16 globins using the
SIM versus that obtained under the SDMre of Sect. 3. In each case, the respective
model was used to estimate the pairwise distances for all pairs of proteins, and
the resulting pairwise distance matrix was used to produce a neighbor-joining
tree with the PHYLIP and Drawtree software [12]. Differences observed in these
trees can be expected to also appear in trees if the SDM were used to replace the
SIM component of the fully Bayesian joint sequence-structure tree estimation [3].

The phylogenetic trees estimated using posterior mean evolutionary dis-
tances are shown in Fig. 5. The SIM and SDMre trees are very similar, and
neither matches the accepted NCBI taxonomy exactly. However, the SDMre tree
improves upon the SIM tree in that botfly and fruitfly are now placed together
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in a single clade with no other species, as in the NCBI taxonomy. This example
demonstrates that phylogeny estimation can be adversely affected by ignoring
structural dependence, even for proteins with high structure similarity such as
these globins.

The SIM and SDMre models leading to the trees in Fig. 5 differ in two ways:
incorporation of dependence in the diffusion, and incorporation of the random-
effect relation between the sequence and structure time parameters. For com-
parison, we also ran the SIM with the random-effect incorporated, but without
dependence in the diffusion model. This SIMre does not correctly group bot-
fly and fruitfly, indicating that it is the site dependence which leads to the
improved tree topology. For comparison, the sequence-only tree is also shown
(for a superset of globins) in panel (a) of Fig. 3; it is highly inaccurate due to
many pairs with highly divergent sequences. Without the structural component
of the model included, these divergent sequences yield highly uncertain distance
estimates which significantly destabilize the tree.

Fig. 5. The SDMre tree (left) improves upon the SIM tree (right) by grouping the
botfly and fruitfly in their own clade, matching the accepted NCBI taxonomy.

5 Discussion

The site-dependent structural evolution model described here allows a signifi-
cant improvement in model realism while retaining the computational tractabil-
ity necessary for use in phylogenetic inference. As shown, the incorporation of
dependence into the model significantly reduces bias in the estimates of evo-
lutionary distance, and can have a resulting stabilizing effect on phylogenetic
tree reconstruction. These results suggest a need for continued research on com-
putationally efficient site-dependent sequence evolution models, which can be
expected to further improve inference in these problems. This is because our
current combined sequence-structure model pairs the site-dependent structural
model with a site-independent sequence model, which likely still retains some
downward bias on the estimated evolutionary distance due to the independence
assumption in the sequence side of the model.
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A natural next step will be to incorporate the site-dependent structural model
presented here into the fully Bayesian simultaneous alignment and phylogeny
reconstruction model of [3], which currently uses the site-independent structural
model. This extension would be straightforward and may improve inference of
multiple sequence alignments in addition to improving inference of phylogenetic
trees.
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A Appendix

A.1 Modified Dynamic Programming for a Pair HMM
with Dependence

In the SDM, the dynamic programming equations’ coordinate emission proba-
bilities for each site will now involve preceding positions’ coordinates. Because
these probabilities are specified by distributions conditional on an alignment, we
must know the form of the joint distribution p(X,Y |M) given any alignment M.

In our model, as in [2], a pair HMM is used to model the distribution of
pairwise alignments between two proteins. As described in [10], the use of a pair
HMM allows one to calculate the probability of two protein structures marginal-
ized over all possible alignments between the two structures. This is accom-
plished via dynamic programming by using the well-known forward algorithm
to recursively calculate values of fk(i, j) (i.e., the total probability of all partial
alignments through position (i, j) in the ancestor (i) and descendant (j) that
end in state k ∈ {Match,Delete, Insert}). The forward equations typically used
for this purpose are presented in [10] as:

fM (i, j) = pXi,Yj
· (aMMfM (i − 1, j − 1) + aDMfD(i − 1, j − 1) (14)

+ aIMf I(i − 1, j − 1))

fD(i, j) = pXi
· (aMDfM (i − 1, j) + aDDfD(i − 1, j) + aIDf I(i − 1, j)) (15)

f I(i, j) = pYj
· (aMIf

M (i, j − 1) + aDIf
D(i, j − 1) + aIIf

I(i, j − 1)) (16)

where pXi,Yj
, pXi

, pYj
are the three emission probabilities for (respectively): a

matched pair Xi, Yj , a deletion Xi, and an insertion Yj . Terms of the form aJK

give the probability of transition from state J to state K in the pair HMM. The
emission probability terms pXi,Yj

, pXi
and pYj

involve only the sites denoted and
are independent of neighboring sites1. The SDM emission probabilities are not
independent of other sites, so the forward equations must be modified.

1 For a detailed explanation of the standard forward equation terms we refer the reader
to the pair HMM material in [10].
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To illustrate the set of changes needed, we focus only on the Match equa-
tion (14); analogous changes are required for the other two recursive equations.
Equation (14) gives the total probability of all alignments up to position (i, j)
which end with a Match at position (i, j). The three terms on the right hand
side arise because a path through the pair HMM could arrive at a Match at
(i, j) from one of three previous states in the path: either a Match, Delete, or
Insert at (i − 1, j − 1). The term pXi,Yj

is a single factor on the right hand side,
indicating that the Match emission probability at (i, j) is the same regardless of
the previous state in the path. In our case, the Match emission probability at
(i, j) depends on the previous state in the path. Accordingly, the first step in
modifying the equation for our purposes is to define unique emission probabili-
ties that depend on the previous state in the path through the pair HMM. We
write the site-dependent version of (14) as

fM (i, j) = (p̄M
XiYj

) · aMMfM (i − 1, j − 1) (17)

+ (p̄D
XiYj

) · aDMfD(i − 1, j − 1)

+ (p̄I
XiYj

) · aIMf I(i − 1, j − 1)

where the superscripts on p̄ terms indicate the previous state before the Match
at Xi, Yj . The modified equations for fD(i, j) and f I(i, j) are analogous. Any of
the emission distributions p̄ can be derived by first writing down the joint distri-
bution for the appropriate backbone positions given an alignment (see Sect. 2.6)
and then conditioning on that multivariate normal distribution as needed.

When determining the emission distributions, obvious edge cases must be
dealt with. In addition, note that the emission distribution for a matched pair
given a previous Match (p̄M

XiYj
) depends on where in the alignment the emit-

ted matched pair occurs. In other words, calculation of p̄M
XiYj

should take into
account two possibilities: one, that the state prior to the previous Match was
also a Match, or two, that it was an Insertion or Deletion. This can be verified
by considering the joint distribution for 3 consecutive matched pairs and noting
that the distribution of the 2nd matched pair conditional on previous positions
is different than the distribution of the 3rd matched pair conditional on previous
positions. This characteristic arises due to the specific forms chosen for the OU
process’ Θ and Σ in our site-dependent model. Thus, the term p̄M

XiYj
in (17)

will itself be calculated as a sum over possible states preceding the prior state:

p̄M
XiYj

= p̄
(M)1
Xi,Yj

[fD(i − 2, j − 2) · aDM · p̄D
Xi−1,Yj−1

(18)

+ f I(i − 2, j − 2) · aIM · p̄I
Xi−1,Yj−1

] · aMM

+ p̄
(M)2
Xi,Yj

[fM (i − 2, j − 2) · aMM · p̄M
Xi−1,Yj−1

] · aMM .

The presence of the recursive term p̄M
Xi−1,Yj−1

in the equation above requires
that an additional dynamic programming matrix be tracked. There are no other
emission probabilities which depend on more than one previous hidden state of
the pair HMM.
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Derivation of Emission Probabilities. Suppose Mp is a known partial align-
ment of all matches, aligning n positions Xi through Xi+n−1 to positions Yj

through Yj+n−1 with no indels. The joint distribution of these backbone coordi-
nates p(Xi,i+n−1, Yj,j+n−1|Mp) has a block covariance matrix:

p(Xi,i+n−1, Yj,j+n−1|Mp) ∼ N

(
0,

(
Σn×n RT

R Σn×n

))
(19)

where Σn×n is equal to the stationary OU solution obtained using (8) and R is
n × n, equal to:

R =
σ2e−θτ

2θ

⎛

⎜⎜⎜⎜⎜⎝

1 ρ ρ2 ρn−1

ρk 1 ρ · · · ρn−2

ρ2k ρ 1 ρn−3

...
. . .

...
ρn−1k ρn−2 ρn−3 · · · 1

⎞

⎟⎟⎟⎟⎟⎠

with k = 1−(1−ρ2)eθρ2τ

ρ2 . The emission probability for an Insertion Yj or Deletion
Xi at a particular site given its previous neighbor has an AR(1) form:

p(Xi|Xi−1, Yj) ≡ p(Xi|Xi−1) ∼ N(ρXi−1, σ
2(1 − ρ2)) (20)

p(Yj |Xi, Yj−1) ≡ p(Yj |Yj−1) ∼ N(ρYj−1, σ
2(1 − ρ2)). (21)

The joint distribution p(X,Y |M) can be specified by combining these insertion
and deletion distributions with the distribution for contiguous matches in (19).
Then, the nine dynamic programming emission distributions can be verified using
standard techniques for conditioning multivariate normal distributions.

A.2 Dependent Binary Sequence Model

Let σ represent a length n binary sequence. The space of all 2n possible sequences
is Ω = {σ1, σ2, . . . , σ2n}. A given sequence σi consists of n−1 pairs of neighboring
labels. To characterize members of Ω, let ki denote the number of neighbor pairs
in σi with identical labels (k for “keeps” the same label from one position to the
next), and let ci denote the number of neighbor pairs in σi with different labels
(c for “changes”). Now define λσi

:= ki − ci. We can refer to λσ as a degree of
dependence: for sequences with λσ > 0, more than half the neighboring label
pairs will have the same label and overall the sequence labels will appear non-
randomly distributed along the sequence. If λσi

< 0, the sequence will look more
like a uniform distribution of labels.

To construct a simple model for site-dependent binary sequence evolution,
we construct a Markov chain on the state space of binary sequences such that
the transitions are site-dependent. We first specify a set of (identical) transition
rates {ai} and a corresponding probability jump matrix P having entries Pij .
The generator Q for the corresponding Markov chain has entries Qij = aiPij .
In defining P , we follow the convention that multiple substitutions cannot occur
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simultaneously, so that the (i, j) entry of Q and P will be 0 if the configurations
σi, σj differ at more than one position. To induce dependence into such a model,
we set Qij = bλσj

−λσi /Zi with b ≥ 1 an adjustable parameter controlling the
strength of neighbor dependence (b = 1 represents neighbor independence) and
Zi a normalizing constant for the row such that the off-diagonal row elements
sum to 1. Suppose the Markov chain is currently in state i. After an exponential
waiting time elapses (given by rate ai), the Markov chain is more likely to transi-
tion to states j having larger λσj

−λσi
than to states j having smaller λσj

−λσi
.

In other words, in this model a binary sequence is more likely to evolve into a
sequence with a more contiguous blocks of identical labels than into a sequence
where the sequence labels are uniformly distributed along the sequence length.
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Abstract. Neoepitope peptides are newly formed antigens presented
by major histocompatibility complex class I (MHC-I) on cell surfaces.
The cells presenting neoepitope peptides are recognized and subsequently
killed by cytotoxic T-cells. Immunopeptidomic approaches aim to charac-
terize the peptide repertoire (including neoepitope) associated with the
MHC-I molecules on the surface of tumor cells using proteomic technolo-
gies, providing critical information for designing effective immunother-
apy strategies. We developed a novel constrained de novo sequencing
algorithm to identify neo-epitope peptides from tandem mass spectra
acquired in immunopeptidomic analyses. Our method incorporates prior
probabilities to putative peptides according to position specific scor-
ing matrices (PSSMs) representing the sequence preferences recognized
by MHC-I molecules. We implemented a dynamic programming algo-
rithm to determine the peptide sequences with an optimal posterior
matching score for each given MS/MS spectrum. Similar to the de novo
peptide sequencing, the dynamic programming algorithm allows an effi-
cient searching in the entire peptide sequence space. On an LC-MS/MS
dataset, we demonstrated the performance of our algorithm in detecting
the neoepitope peptides bound by the HLA-C*0501 molecules that were
superior to database search approaches and existing general purpose de
novo peptide sequencing algorithms.

Keywords: De novo · neo-epitope · Mass spectrometry · Proteomics

1 Introduction

The peptide epitopes presented by major histocompatibility complex class I
(MHC-I) molecules on cell surfaces display a representative image of the col-
lection of (endogenously synthesized or exogenous) proteins in the cell, allow-
ing immune cells (e.g., the CD8+ cytotoxic T-cells) to monitor the biological
activities occurring inside the cell, a process known as the immune surveillance
[2,7,28]. A typical process of the peptide processing and presentation involves
three steps: (1) the cytosolic proteins are first degraded into peptides by the
c© Springer International Publishing AG, part of Springer Nature 2018
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https://doi.org/10.1007/978-3-319-89929-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89929-9_9&domain=pdf
http://orcid.org/0000-0001-8963-8155


Neoepitope Peptide Sequencing 139

proteasome; (2) the resulting peptides are loaded onto MHC-I molecules; and
(3) the MHC-I/peptide complex is transported into the plasma membrane of the
cell via endoplasmic reticulum (ER), while the extracellular domain of MHC-I,
where the epitope peptide binds, is exported outside the membrane. In nor-
mal cells, the peptides presented by MHC-I will not induce immune responses.
However, when abnormal processes (e.g., viral infection or tumorigenesis) occur
inside cells, a fraction of MHC-I molecules may present peptides from foreign
or novel proteins (e.g., due to somatic mutations in tumor cells), often referred
to as the neoepitope peptides or neoantigens. Consequently, the cells presenting
such peptides will likely to be recognized and subsequently killed by cytotoxic
T-cells.

It is now well known that, during tumor development, maintenance and pro-
gression, tumor cells accumulate thousands of somatic mutations, many of these
occurring in protein-coding regions of tumor genes [6,22,29]. Among them, mis-
sense or frameshift mutations have the potential to generate neoepitope peptides,
which can be used as biomarkers for characterizing the states and subtypes of
cancer, or can be selected as potential therapeutic cancer vaccines to induce
robust and tumor-specific responses [7,30]. Furthermore, neoepitope peptides
were recently demonstrated as potential targets in cancer immunotherapies such
as adoptive T-cell therapy [39].

In the past decade, clinical evidence has been accumulated on tumor-specific
immune activities, leading to the implementation of successful strategies of can-
cer immunotherapy [9]. Because of the strong implications of neoepitope peptides
in the design of effective cancer immunotherapy, different genomic and proteomic
methods have been developed to identify neoepitope peptides presented by tumor
cells from cancer patients. The genomic approaches start from exon and tran-
scriptome sequencing of normal and tumor tissues in attempt to identify proteins
over- or under-expressed tumor issues, as well as missense or frameshift muta-
tions in tumor proteins [20,25], and then use computational methods [1,13,40] to
predict neoepitope candidate from these tumor proteins based on the immuno-
genicity of peptides, i.e., the likelihood of peptides being presented by MHC-I
molecules in tumor cells and furthermore likely to provoke an immune response.
Notably, the genomic approaches may not report accurate neoepitope peptides
due to various limitations of the methods. First, some very low abundant pro-
teins that may not be identified using transcriptome sequencing are often pre-
sented by the MHC-I molecules, and can provoke robust immune responses. Sec-
ond, current immunogenicity prediction algorithms cannot yet accurately model
the process of antigenic peptide processing and presentation by MHC-I, and
thus may report many false positives and false negatives of neoepitope peptides.
Most importantly, as multiple MHC-I molecules are encoded by the highly poly-
morphic human leukocyte antigen (HLA) genes (including three major types of
HLA-I, HLA-II and HLA-III) in an individual patient, the peptide immunogenic-
ity is indeed a private measure specific to this cancer patient, and thus cannot
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be modeled without sufficient neoepitope peptides already identified from the
patient’s own sample [10].

Fig. 1. An example of posi-
tional specific scoring matrix
(PSSM) (shown as a frequency
heatmap) derived from neoepi-
tope peptides of 9 amino
acid residues bound to HLA-
C*0501. The third position is
dominated by Asp while at the
ninth position, Leu and Val are
preferred.

In contrast, the immunopeptidomic approaches
aim to directly analyze the peptide repertoire
bound by the MHC-I molecules on the surface
of tumor cells using proteomic technologies, and
thus can overcome the limitations of genomic
approaches. Because of its high throughput and
sensitivity, liquid chromatography coupled tan-
dem mass spectrometry (LC-MS/MS) has been
routinely used in proteomics in an attempt to
identify and quantify proteins in complex pro-
tein mixtures, and also becomes the technol-
ogy of choice for the identification of neoepitope
peptides eluted from MHC molecules [5]. From
the MS/MS spectra acquired in an immunopep-
tidomic experiment, potential neoepitope pep-
tides are identified often using a database search
engines designed for peptide identification in pro-
teomics (e.g. Sequest [12], Mascot [8] or MSGF+
[19]). However, the neoepitope peptides have
some distinct features comparing to the peptides
from general proteomic analysis. On one hand,
neoepitope peptides bound to different classes of
MHC-I molecules have relatively fixed length; for
example, human HLA class I (HLA-I) recognizes
peptides 8 to 12 amino acid residues in length [4].
On the other hand, unlike the peptides in proteomic experiments typically from
tryptic digestion at specific basic amino acid residues, neoepitope peptides can
be cleaved by proteasome at any arbitrary position in the target proteins. As
a result, when MS/MS spectra from an immunopeptidomic study is searched
against a target protein database (e.g, consisting of all human proteins), all non-
tryptic peptides of the lengths within a range (8–12 residues) are considered; in
the human protein database, there are ≈ 107 − 108 such peptides, much greater
than the number of tryptic peptides (≈ 106). Furthermore, a recent study demon-
strated that a surprisingly large fraction (about a third) of neoepitope peptides
are generated by proteasome-catalyzed peptide splicing (PCPS) that cuts and
pastes peptide sequences from different proteins [24]. If all concatenate peptides
(with two subpeptides from the same or different proteins) are considered in the
database search, the number of target peptides increases to ≈ 1015, close to the
total number of peptides 8–12 residues in length. Which poses great challenges
to database search not only on the running time but also on potential false pos-
itives in peptide identification. Finally, strong sequence patterns are present in
neoepitope peptides, largely because of the preferences in the binding affinity
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and specific structures of MHC-I molecules. The sequence pattern in neoepitope
peptides recognized by a specific class of MHC-I molecule can be represented
by a positional specific scoring matrices (PSSMs; see Fig. 1 as an example for
HLA-C) [17], or more complex machine learning models for predicting peptide
immunogenicity [1]. However, these sequence information are not used by current
approaches for neoepitope peptide identification in proteomic experiments.

De novo peptide sequencing algorithms (such as Peaks [27], pepNovo [14],
pepHMM [37] and most recently, uniNovo [16], Novor [26] and DeepNovo [32,33])
represent a different approach to peptide identification in proteomics, that
attempt to reconstruct the peptide sequence directly from an MS/MS spec-
trum. Comparing to database search algorithms, de novo sequencing algorithms
explore the entire space of peptides, but are often more efficient because of the
employment of a dynamic programming algorithm. From a Bayesian perspec-
tive, the database search approach can be viewed as a special case of de novo
peptide sequencing, which assumes that only the proteins in the database can
be present in the sample, and thus the peptides from these proteins have the
prior probabilities of 1 while the other peptides have the prior probabilities of
0 [23]. Previous studies have showed that although the top peptide reported
by the de novo sequencing algorithm for an MS/MS spectrum was sometimes
incorrect, the correct one was usually the peptide in the database that received
the highest score in de novo sequencing [14,27], indicating that the incorpora-
tion of the protein database as prior knowledge significantly improves peptide
identification.

In this paper, we present a novel constrained de novo sequencing algorithm
for neoepitope peptide identification. The method can be viewed as a hybrid
approach of the de novo sequencing and the database searching algorithms: it
explores the entire space of peptide sequences 9–12 residues in length, but assigns
a different prior probability to each putative peptide according to MHC-I specific
PSSMs, such that the peptide with a motif with high immunogenicity incorpo-
rates a high prior probability into the posterior probability score of the peptide-
spectrum matches (PSMs). Utilizing the sequential property of the PSSMs, we
extended the dynamic programming (DP) algorithm for de novo peptide sequenc-
ing to determine the peptide sequences with the optimal posterior matching
scores for each given MS/MS spectrum. Notably, similar to de novo peptide
sequencing algorithms, the dynamic programming algorithm allows an efficient
searching in the entire peptide sequence space, which, as shown above, is com-
parable to the size of the database consisting of all putative neoepitope peptides
(including the concatenate peptides) derived from human proteins. We tested
our algorithm in a LC-MS/MS dataset for detecting the neoepitope peptides
bound by the HLA-C*0501 molecules [18]. Our method could detect about 19,017
neoepitope peptides of lengths between 9 to 12 residues with estimated false dis-
covery rate below 1%. In contrast, the database search approach (using MSGF+
against the human protein database) identified about 4,415 PSMs (1,804 unique
peptides), in which 2,104 PSMs (764 unique peptides) have the length between
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9 to 12 residues as putative neoepitope peptides. Out of the 2,104 PSMs, 1,269
were also identified by our method. A majority (791 out of 1,269) of the PSMs
were exact matches, while most (360 out of 478) remaining PSMs contain only
a swap of consecutive residues in peptide sequences. Finally, we tested a con-
ventional de novo sequencing algorithm uniNovo [16] on the same dataset. It
reported sequence tags on 1,863 MS/MS spectra, but with low sequence cover-
age (on average three amino acid residues per peptide), and thus cannot be used
in neoepitope peptide sequencing. These results imply that the constrained de
novo sequencing algorithm benefit from the prior probabilities (provided by the
PSSMs) to distinguish the most likely neoepitope peptides from other peptides
sharing similar sequences.

2 Method

Constrained de novo Peptide Sequencing. Given an MS/MS spectrum
M , the constrained de novo peptide sequencing problem is to find the peptide
sequence T within a range of length (lmin ≤ |T | ≤ lmax) that maximizes a
posterior matching score S:

Score(M,T ) = P (T ) · P (M |T ) (1)

where P (T ) represents the prior probability of the peptide T , and P (M |T ) rep-
resents the matching probability, i.e., the probability of observing the MS/MS
spectra from the peptide T . For peptides with a fixed length l, their prior
probabilities are defined by a PSSM pij (

∑
i pij = 1) for residue i at the

position j (j = 1, 2, ..., l) in the peptide; thus, for the peptide T = t1t2...tl,
P (T ) =

∏l
j=1 ptjj . The matching probability P (M |T ) is modeled by the inde-

pendent fragmentation at each peptide bond: P (M |T ) =
∏l

j = 1P (fM,j), where
P (fM,j) stands for the probability of observing fM,j , the occurrence pattern of
the set of fragment ions, including the b-ion, y-ion and the neutral loss ions,
derived from the fragmentation between the precursor (t1t2...tj) and the suffix
(tj+1tj+2...tl) peptide in M . Notably, fM,j is dependent only on mj , the j-th
prefix mass of the prefix peptide t1t2...tj , but is not dependent on the peptide
sequences. Therefore,

Score(M,T ) =
l∏

j=1

[ptjjP (F (mj))] (2)

where P (F (mj)) represents probability of observing the set of fragment ion
F (mj) associated with the prefix mass mj in M . These probabilities can be
learned from a training set of identified MS/MS spectra [14], in which the peaks
are assigned. Alternatively, as adopted here, P (F (mj)) is assigned empirically
based on the logarithm transformed ion intensities of the matched b- or y-ions
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(within a mass tolerance). Let S(j,m) be the maximum posterior matching score
between an MS/MS spectrum and any peptide of length j with a total mass of
m, which can be computed by using a dynamic programming algorithm,

S(j,m) = maxk∈A[S(j − 1,m − k) · [pj,k · P (F (m))]] (3)

where k is an amino acid in the alphabet A. Note that the multiplication of
probabilities in Eq. 3 can be transformed into the summation of the logarithms
of probabilities. Finally, the optimal potential matching score of a peptide with
a fixed length l, implicated as the number of columns in the PSSM, matching
a given spectrum M , is S(M ; l,mpr), in which mpr is the precursor mass of
M . The algorithm can be applied to each putative peptide length between lmin

and lmax with a corresponding PSSM, and the peptides will be reported in the
order of their posterior matching scores. The dynamic programming algorithm is
executed in O(l ·mpr) time using O(l ·mpr) space (where the fragment ion masses
are binned according to the mass resolution), but can be further accelerated
by heuristics as described below. Note that the prefix mass scoring has been
previously proposed as a useful tool for de novo peptide sequencing [14], database
searching [19] and spectrum alignment to identify mutations and post-translation
modifications (PTMs) [31]. The dynamic programming algorithm presented here
can be view as matching a predefined PSSM against a vector of prefix mass
scores (probabilities) in order to find the optimal matches between a peptide
and a subset of prefix masses.

Accelerating the Dynamic Programming Algorithm. For an input
MS/MS spectrum of the precursor mass mpr and a PSSM with a specific neoepi-
tope peptide length l, the above algorithm explores all potential prefix masses
between 0 and mpr for each prefix peptide of the length from 0 to l. However,
there are only a limited number of prefix masses corresponding to prefix peptides
of a fixed length, indicating that the matrix of S(j,m) computed in Eq. 3 has
many zeroes, especially when for small j. To compute only the non-zero elements
in S(j,m), we exploited a branch-and-bound approach to explore the peptide
space, while retaining only the best scored sub-peptide among those with the
same prefix mass.

The sequencing algorithm maintains a pool of putative prefix peptides, each
associated with a posterior matching score. The pool starts with N (N = |A| =
20 representing the number of amino acid masses) prefix peptides of length 1
(Fig. 2) with posterior matching scores of S(1,m(k)) = p1k ·P (F (m(k))) (where
m(k) is the mass of the amino acid k). At each following iteration j, for j =
2, ..., l, every prefix peptide in the pool generates N new prefix peptides, one for
every amino acid, by appending a new amino acid to the end of each existing
peptide (of length j − 1) in the pool.
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Fig. 2. A schematic illustration of the exploration of the pep-
tide sequence space in the constrained de novo algorithm (see
text for details).

After appending an
amino acid k to an
existing prefix pep-
tide with mass m′, the
mass of the resulting
prefix peptide (i.e.,
the prefix mass m)
is used to compute
P (F (m)), and then
the posterior match-
ing score of the new
prefix peptide is com-
puted by S(j,m) =
S(j − 1,m′) · pjk ·
P (F (m)), where S(j−
1,m′) is the posterior
matching score asso-
ciated with the exist-
ing prefix peptide of
length j − 1. At each step, the precursor mass m should match at least one
of b- and y-ions; otherwise, the precursor peptide is labeled with one miscle-
avage, which is tracked on each iteration of an algorithm: if a prefix peptide
contains too many miscleavages, it is eliminated from further extension. Once
the posterior matching score of a prefix peptide is obtained, it will be compared
with other peptides in the pool with the same prefix mass, and the k (default = 5)
best scoring peptides are retained. After each step, at most N ×mpr prefix pep-
tides are retained in the pool. The algorithm is illustrated in Fig. 2. We note
that, although the worst-case running time of the de novo sequencing algorithm
is still O(l · mpr) for each spectrum, in practice, it runs much faster as many
un-realistic prefix masses were not evaluated, especially for small l.

In the final step (with prefix peptides of the expected length l), all peptides
with masses matching the precursor mass are re-assessed by using a global scor-
ing scheme (see below), and are reported in the order of their global scores. Note
that for each input MS/MS spectrum, the constrained de novo algorithm was
conducted four times, with an input PSSM for peptides of length 9, 10, 11 and
12, respectively.

Pre-processing of MS/MS Spectra. Prior to constrained de novo sequencing
algorithm, several pre-processing steps were conducted on the MS/MS spectra,
including: (1) peaks with an intensity of 0 were removed; (2) the precursor peak
was removed; (3) any converted mass greater than precursor mass was removed;
(4) Isotopic masses of precursor masses were removed; (5) the intensities of all
peaks were logarithm-transformed.

Construction of PSSMs. Peptides of length 9–12 were extracted from the
IEDB [35] database http://www.iedb.org/, and separated by length. A total of
892 peptides of length 9, 191 peptides of length 10, 110 peptides of length 11,

http://www.iedb.org/
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and two peptides of length 12 were considered. Four PSSMs were created, one for
each peptide length, in which the amino acid frequency in every position in the
PSSM was computed based on these peptide sequences and the pseudo-count of
1 was incorporated to ensure there were no frequencies of 0.

Re-Assessment of Peptide-Spectrum Matches (PSMs) by Global Scor-
ing. The global score of a PSM is a probability measure, based on a combination
of the prior probability based on the input PSSM, and how well it’s theoreti-
cal fragmentation of the peptide matches to the experimental spectrum. It is
calculated using Eq. (1), where P (T ) is the probability of the peptide given the
PSSM, normalized to the length of the peptide, and P (M |T ) is the probability of
observing MS/MS M from peptide T based off of the theoretical fragmentation
of T . P (M |T ) is calculated by

Score(A,E,W ) = 1 −
k∑

i=1

ai · ei
W

(4)

where ei is a normalized intensity of the experimental spectrum E, ai is the mass
accuracy (in ppm) between experimental mass i and theoretical fragmentation
mass i (or W if there is no matching mass between the two), from the mass
accuracy vector A, W is the lowest allowable mass accuracy between an experi-
mental and theoretical mass, and k is the number of peaks in the experimental
spectrum M .

Fig. 3. Score distributions of PSMs reported by the constrained de novo sequencing
algorithm and the decoy PSMs from the reverse peptides.

False Discovery Rate Estimation. After the global scores were computed for
all PSMs, it was necessary to determine a score threshold to validate whether
a peptide match was reliably identified from an MS/MS spectrum by our con-
strained de novo sequencing algorithm. Note that it is possible for multiple simi-
lar peptide sequences to score high enough to indicate that any of them could be
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the correctly identified neoepitope peptide producing the corresponding MS/MS
spectrum. In this case, the de novo sequencing algorithm reports all of them.
As shown in the results section, in practice, usually only a few peptides(2̃) are
reported for each spectrum.

To obtain an appropriate score threshold, we adopted similar strategy to the
target-decoy search in database searching [11] to estimate the false discovery rate
(FDR) of PSMs. We generated a decoy peptide database consisting of about 40
million randomly selected and reversed peptides with lengths of 9–12 residue
from the proteins in the Uniprot database. Additionally, a second database was
created for the reversed peptides found by the constrained de novo sequencing
algorithm. For each spectrum in our analysis, up to 10 peptides matching the
spectrum precursor mass within the mass resolution (35 ppm) were selected from
both databases as decoys. The top scoring peptides among these decoy peptides
were used to form the decoy PSMs, whose global scores were computed. The score
distributions are depicted in Fig. 3, containing the scores from both decoy PSMs
and the PSMs reported by the constrained de novo sequencing algorithm. We
then used the following formula to estimate the FDR at a certain score threshold
t: FDRt = Ndecoy/Ncons, where Ndecoy and Ncons represent the numbers of
decoy and positive (from the sequencing algorithm) PSMs with global scores
above t, respectively. We then estimated that PSMs with higher than 0.0058
have FDR lower than 1%.

Datasets. The dataset was obtained from ProteomeXChange [36] (accession
number: PXD006455). The experiments were conducted on two common HLA-C:
HLA-C*05:01 and HLA-C*07:02. These HLA class I molecules were isolated from
the cell surface of C*05 and C*07 transfected 721.221 cells, and sequenced bound
peptides by mass spectrometry. As observed in the original article [18], HLA-
C*05:01 has higher expression level and more diversified binding peptides. In our
testing, we chose the binding peptides of HLA-C*05:01 (with length between 9
to 12 residues) to demonstrate the performance of our method. In total, there
are 339,513 spectra acquired in a total 25 fractions of LC-MS/MS analysis using
the Q Exactive HF-X MS (Thermo Fisher Scientific) [36].

Database Searching. We used MSGF+ [19] here as the database search-
ing engine. The parameters for the MSGF+ are set as following to match the
experimental conditions of the LC-MS/MS analyses: (1) instrument type: high-
resolution LTQ; (2) the enzyme type: unspecific cleavage; (3) precursor mass
tolerance: 35 ppm; (4) isotope error range: −1, 2; (5) modifications: oxidation
as variable and carboamidomethyl as fixed; (6) maximum charge is 7 and mini-
mum charge is 1. The FDR is estimated by using a target-decoy search approach
(TDA) [11].

3 Results

Constrained de novo Sequencing. We implemented the constrained de novo
sequencing algorithm in C. It spends a total of 8,910 min on a Linux computer
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(Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60 GHz) as single thread to process
339,513 input MS/MS spectra in the HLC-C peptidomic dataset, i.e., about
1.6 s per MS/MS spectrum. Among the entire set of spectra, the sequencing
algorithm reported one or more peptide sequences for 136,249 (40.14%) spectra,
resulting a total of 2,775,977 peptide-spectrum matches (PSMs), i.e., 20 PSMs
(peptides) per spectra. Among them, 81,888 PSMs over 28,759 spectra (i.e., 2.85
PSMs per spectra) received a global matching score above 0.0058 (corresponding
to about 1% FDR; see Methods), corresponding to 57,449 unique peptides, are
retained for further analysis.

Fig. 4. The length distributions of the top-ranked peptides reported by the constrained
de novo sequencing algorithm (A); and the sequence logos representing the position
specific frequency pattern among the top-ranked peptides with different lengths (B).

The top-ranked peptides of the 28,759 spectra corresponds to 19,017 unique
peptides. The length distribution of these peptides is illustrated in Fig. 4. A
majority (13,648, 71.76%) of them are 9 residues in length, which is consis-
tent with previous observations [18] and the IEDB database [35], in which 892
out of 1,195 (74.64%) HLA-C*0501 bounded peptides are 9 residues in length.
Figure 4B shows the sequence logo [34] generated by using the identified peptides
by the de novo sequencing method. Specifically, 13,648 peptides have 9 residues,
2,904 have 10 residues, 1,647 have 11 residues, and 818 have 12 residues. Those
sequences were used to generate the sequence logos in Fig. 4. For peptides of
length 9, the sequence logo showed that the positions of P2, P3 and P9 have
strong amino acid preferences: P2 is enriched by Ala, P9 is enriched by Leu/Ile,
and P3 is dominated by Asp. For peptides of other lengths, Asp is predomi-
nant at multiple positions, especially in the peptides N-termini, while Leu/Ile
are predominant in peptides C-termini.

If all the sequences are retained as long as the global matching score is above
the threshold, our method reported 57,449 unique peptide sequences. To be
noted, we kept the all the de novo sequences here, because in many cases multi-
ple peptide sequences containing swapped consecutive amino acids are reported,
possibly due to missing fragment peaks to distinguish them in the MS/MS spec-
tra. For those cases, the constrained de novo peptide sequencing algorithm will
report very similar peptides with nearly identical global matching scores.
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Fig. 5. (A) The comparison of PSMs and identified unique peptides (in parentheses)
reported by database searching and constrained de novo sequencing. (B) Number of
amino acids difference in overlapped IDs from database search and constrained de novo.
(C) The prior probability and matching scores of the PSMs reported by the constrained
de novo sequencing and database search approach. The PSMs are depicted in different
colors: orange for those detected by both approaches, red for those detected by database
searching only, and black for those detected by de novo sequencing only while blue for
those reported by de novo sequencing and also have at least 50% sequence similarity
to human proteins (Color figure online)

Comparison with Database Searching Results. MSGF+ is employed to
identify peptides by searching against the human proteome database. The com-
putation takes 1,102 min on a Linux computer (Intel(R) Xeon(R) CPU E5-2670 0
@ 2.60 GHz). It reported 4,415 PSMs given 5% false discovery rate1. Among these
PSMs, 2,104 are identified as peptides of lengths between 9 to 12 residues (cor-
responding to 764 unique peptide sequences), which are putative HLA-C*0501
bounded neoepitope peptides. We compared the peptides identified by our con-
strained de novo sequencing algorithm with those identified by the database
searching method in a Venn diagram shown in Fig. 5A. A total of 1,269 spec-
tra are identified by both the database searching and the de novo sequencing
method, among which 791 spectra were identified as identical peptides2 by both
methods: for 360 spectra, the peptides identified by the de novo sequencing
method differ only in no more than two amino acid residues from the peptides
identified by the database searching (where most of cases are two consecutive
residues swaps); and for the remaining 118 spectra, the two identified peptides by
these two methods differ in more than two residues, but share over 50% sequence
similarity.

1 We used a FDR threshold of 5% to be consistent with the original article [18]. When a
more common FDR threshold 0.01 is used, much fewer (1,280) MS/MS spectra were
identified, among which only 97 were identified as peptides with lengths between 9
and 12.

2 Note that, here only the top-ranked peptides reported by the de novo sequencing
algorithm were considered, and ILE and LEU are considered as identical amino acids
in this comparison.
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The PSMs reported by both the database searching and the de novo sequenc-
ing algorithm, and those reported by only one of these methods were investi-
gated in the context of their prior probabilities and matching scores (Fig. 5C).
The PSMs reported by both methods receive generally higher matching scores
and comparable prior probabilities. 825 out of 835 PSMs reported only by the
database searching method received a global matching score below the thresh-
old 0.0058 used for selecting de novo sequencing results. The remaining ten
PSMs received prior probabilities less than 0.1 (on average, prior probability is
0.05), indicating they are less likely neoepitope peptides. On the other hand,
among the top-ranked 27,476 PSMs reported only by the de novo sequencing
algorithm, 23,857 have the prior probabilities above 0.1. We further analyzed
the 18,905 unique peptides from these 27,476 top-ranked PSMs. When searching
against the human protein database containing 21,006 sequences from Uniprot
[3] using Rapsearch2 [41], 14,658 (77.53%) peptides have 50% or higher sequence
similarity with some peptides from human proteins, while 7,737 (40.93%) pep-
tides differ at most two amino acids (i.e, a swap of two consecutive residues),
including 1,910 (10.10%) identical peptides. Notably, although these identified
peptides are more likely the true neoepitope peptides, some of the rest peptides
may also be neoepitope peptides, e.g., those generated by novel gene splicing
and fusion events, or PCPS [24].

Comparison with Current de novo Sequencing Methods. We attempted
to compare our method with the most recently developed de novo sequenc-
ing method uniNovo [16] on the HLA-C peptidomic dataset. The parameters
of uniNovo are chosen in consistence with the experimental settings: (1) the
ion tolerance: 0.3 Da; (2) precursor ion tolerance: 100 ppm (3) fragmentation
method: HCD; (4) no enzyme specificity is selected; (5) five peptide sequences
per spectrum are reported; (6) minimum length of peptides: 9; and (7) mini-
mum accuracy: 0.8. A total of 1,863 spectra are identified by uniNovo under
these parameters. Most of the sequencing results are non-conclusive: only 3–
6 (on average 3.1) amino acid residues were reported in these peptides, and
the gaps between the residues were reported as mass intervals (e.g., a typical
output of uniNovo is [406.2043]D[204.10266]QI). Because of the non-conclusive
peptide sequences in uniNovo report, we did not further compare it with the
results from our constrained de novo sequencing algorithms. We also compared
our method with another up-to-date and user-friendly de novo sequencing soft-
ware, Novor [26]. We used the default parameters of the software for comparison.
In total, Novor reported 337,717 peptide-spectrum matches (PSMs), with only
one top peptide for each spectrum. We note that, as Novor inherently considers
only trypsin-digested peptides in the de novo sequencing algorithm, and most
neo-epitope peptides do not have K/R at their C-termini, we limited our com-
parison on those top-scored tryptic-like peptides (with K/R at their C-termini)
reported by our constrained de novo sequencing algorithm under 1% FDR. Only
2,259 spectra were identified as tryptic-like peptides by our method, the peptide
sequences reported by both methods on these spectra are, however, quite differ-
ent, with an average hamming distance of 5.9. When compared to the MS-GF+
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results, the peptides reported by Novor have average 4.54 hamming distance,
while our de novo results have average 3.84 hamming distance. This comparison
suggests that the prior information (i.e., the PSSM) employed in the constrained
sequencing algorithm helps to identify the peptide sequences that are more likely
neoepitope peptide than a generic de novo sequencing algorithm without using
this prior information.

4 Discussion

The constrained de novo sequencing method was designed specifically for
characterizing neoepitope sequences from their MS/MS spectra acquired in
immunopeptidomic experiments. The algorithm does not rely on a database of
potential neoepitope peptides, and thus can identify peptides that are not con-
tiguous subsequences of proteins in a database, including those resulting from
novel insertion, deletion, splicing or gene fusion events, or those containing muta-
tions (e.g., in tumor cells) or those generated by proteasome-catalyzed peptide
splicing (PCPS) [24]. The dynamic programming algorithm adopted here allows
for efficient searching in the entire space of peptide sequences within a range of
desirable lengths (e.g., 9–12 residues). The results showed that, when peptides
can be obtained by both methods, the peptide sequence reported by the de novo
sequencing method often match with that from database searching, with at most
one swap between two consecutive amino acid residues. Notably, unlike existing
de novo sequencing algorithms (e.g., uniNovo) often reporting many putative
sequence tags each with relatively low sequence coverage of target peptide, the
constrained de novo sequencing method report one or a few complete peptide
sequence with desirable length. As a result, it is straightforward to search for the
occurrence of peptide sequences in a protein database, even for those generated
by PCPS (e.g., concatenated from two subpeptides in different proteins).

The results on the testing dataset showed that many MS/MS spectra that
were not identified by the database searching approach were identified as puta-
tive neoepitope peptides by the constrained de novo sequencing algorithm. This
is probably due to the fact that the constrained de novo sequencing method
benefits from the incorporation of PSSMs as prior probabilities, which prefers
the peptides with high immunogenicities (i.e., likely to be presented by MHC-I).
This is consistent with the typical experimental setting in immunopeptidomics,
where peptides bound to a target MHC-I protein (e.g., HLA-C for the dataset
used here) are enriched before the LC-MS/MS analyses. Hence, we anticipate
a majority of MS/MS spectra result from the those peptides and thus can be
identified using the constrained de novo sequencing method. On the other hand,
other peptides (not bound to the target MHC-I molecule) are not of interests
in immunopeptidomics, and thus it is not a concern if the de novo sequencing
method cannot identify them.

The PSSMs adopted in this study were constructed by using known peptide
sequences bound to a target MHC-I protein (HLA-C). The PSSMs for some desir-
able lengths are not informative as there are only very few known peptides of the
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respective length (e.g., only two known sequences have 12 residues in lengths).
The PSSMs for some other classes of MHC-I may be even less characterized in
current literature. We expect more accurate PSSMs can be derived after more
neoepitope peptides become available with the advances of immunopeptidomic
analyses, which can further improve the constrained de novo sequencing as pre-
sented here. Moreover, it is anticipated the preferences of MHC-I can be different
in different patient because of the presence of many alleles of MHC-I encoding
genes in human population. Therefore, specific PSSMs may be needed to be con-
structed for different MHC-I alleles so that appropriate PSSMs can be selected
(based on HLA typing from the patient’s genomic sequencing data [15,38]) for
neoepitope peptide analyses of an individual patient.

The method presented here can also be applied to sequencing of other types
of neoepitope peptides. For example, even though the attention has been most
focused on the peptides presented by MHC-I that stimulates the cytotoxic killer
T-cell responses, the peptides presented by MHC-II that are important for CD4+
helper T-cell responses [21] can also be characterized using a similar approach.
The MHC-II presented peptides are typically longer in length and more variable,
and thus more data are required to derive useful prior PSSM models.
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Abstract. Peptide arrays measure the binding intensity of a specific
protein to thousands of amino acid peptides. By using peptides that cover
all k-mers, a comprehensive picture of the binding spectrum is obtained.
Researchers would like to measure binding to the longest k-mer possible,
but are constrained by the number of peptides that can fit into a single
microarray. A key challenge is designing a minimum number of peptides
that cover all k-mers. Here, we suggest a novel idea to reduce the length
of the sequence covering all k-mers by utilizing a unique property of the
peptide synthesis process. Since the synthesis can start from both ends
of the peptide template, it is enough to cover each k-mer or its reverse,
and use the same template twice: in forward and reverse. Then, the com-
putational problem is to generate a minimum length sequence that for
each k-mer either contains it or its reverse. We developed an algorithm
ReverseCAKE to generate such a sequence. ReverseCAKE runs in time
linear in the output size and is guaranteed to produce a sequence that
is longer by at most Θ(

√
n log n) characters compared to the optimum

n. The obtained saving factor by ReverseCAKE approaches the theoret-
ical lower bound as k increases. In addition, we formulated the problem
as an integer linear program and empirically observed that the solu-
tions obtained by ReverseCAKE are near-optimal. Through this work
we enable more effective design of peptide microarrays.

Keywords: de Bruijn graph · de Bruijn sequence · Peptide array
Reverse synthesis · Array design

1 Introduction

Protein-peptide interactions are a central focus of biological research. They play
roles in many cellular processes. Some proteins, such as enzymes and antibodies,
bind short peptides and by that affect their imminent function. Proteins bind
to different peptides with variable affinities. Studying the specificity of protein-
peptide binding is a fundamental goal in understanding cellular processes.
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Technologies measure the binding intensity of a protein to many peptides
(e.g., peptide microarrays [1–3]). These technologies synthesize a large set of
amino acid peptides, and measure the binding intensity of a specific protein to
each of these peptides. Some technologies use random peptide sequences [2,3].
Others use sequences that cover all possible amino acid k-mers [1]. One way
to cover all k-mers is to use de Bruijn sequences, which are known to be the
most compact sequences to cover all k-mers [4,5]. The length of a de Bruijn
sequence of order k over alphabet |Σ| is |Σ|k, where the amino acid alphabet
is of size |Σ| = 20. Due to the exponential dependency on k and small space
on the experimental device, these technologies are limited to a small value of
k (e.g. k = 2 [1]). Despite the universal and high-throughput nature of these
technologies, the data produced are still limited. For many proteins the binding
depends on more than two amino acid positions. Covering all k-mers for a greater
value of k will lead to improved understanding of peptide interactions.

Here, we utilize for the first time a unique property of amino acid peptide
synthesis process to generate smaller peptide libraries. As peptide synthesis can
start from both the N-terminus and C-terminus [6], one can save by using this
reverse property: if the synthesis starts from both ends, whenever a k-mer is
included, its reverse is included as well, and there is no need to cover it again.
This brings up the following question: a sequence S is called a reverse de Bruijn
sequence of order k (RdB sequence for short) if for each k-mer either the k-mer
or its reverse are included in S. Can we construct an optimal (minimum length)
RdB sequence? Theoretically, if for each k-mer T the sequence S includes either
T or its reverse but not both, one could save a factor of nearly 2 compared to
the length of a de Bruijn sequence.

Several solutions have been suggested to generate sequence libraries that
cover all possible k-mers in the most compact space possible. A de Bruijn
sequence is the shortest sequence in which each k-mer appears exactly once.
Its length is given by |Σ|k + k − 1. De Bruijn sequences were used in protein
binding microarrays for k = 10 [7]. A reduction of DNA libraries by half was
achieved by utilizing the reverse-complementarity property of double-stranded
DNA [8–10]. Other methods produce compact unstructured RNA libraries to
measure protein-RNA binding [11,12]. But, none of those studies considered the
property of reverse peptide synthesis, i.e. the need to cover each k-mer by itself
or its reverse.

In this study we address the problem of constructing a compact RdB
sequence. We take the view point of a sequence as a path in a de Bruijn graph,
where an RdB sequence and its reverse are two reverse paths. We first give a lower
bound for the length of an RdB sequence. Then, we give a sufficient and nec-
essary condition for a de Bruijn graph to represent two reverse RdB sequences.
As a consequence, we prove that a minimum length RdB cannot achieve the
lower bound due to palindromes. We present a linear time near-optimal algo-
rithm, ReverseCAKE (Reverse Covering All K-mErs), to make a de Bruijn graph
obtain these properties. Once a de Bruijn graph obtains these properties, a mod-
ified Euler tour algorithm can run on it to produce the sequence. Moreover, we
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formulate the problem as an integer linear program (ILP). We implemented the
algorithm and the ILP formulation and we demonstrate the savings they achieve.
The results enable saving a factor of almost two compared to using a regular de
Bruijn sequence. The code and software are freely available from https://github.
com/yaronore/reverse-de-bruijn.

2 Preliminaries

A directed graph (digraph or simply a graph) G = (V,E) is a set of vertices
V = {v1, v2, . . . , vn} and a set of edges E = {e1, e2, . . . , em}. Each edge is an
ordered pair of vertices (vi, vj), and we say the edge is directed from vi to vj . The
indegree of vertex v is the number of edges entering v. Similarly, the outdegree is
the number of edges outgoing from v. A vertex is balanced if its indegree equals
its outdegree. A path in a digraph is a sequence of vertices, vi1 , . . . , vik , such that
for each 1 ≤ j < k there is an edge (vij , vij+1). A cycle is a path where i1 = ik.
A digraph is strongly connected if for every pair of vertices u, v there exists a
path from u to v and a path from v to u.

An Eulerian tour through a digraph G is a cycle that traverses all edges
in G, such that each edge is traversed exactly once. If a digraph contains an
Eulerian tour, we call it Eulerian. A digraph is Eulerian if and only if it is
strongly connected and all vertices are balanced [13].

A de Bruijn sequence of order k over alphabet Σ is a minimum length
sequence that covers each k-mer over Σ exactly once. For convenience, we define
the length of the sequence as the number of k-mers in it. Hence, a sequence of
length t contains t + k − 1 characters, or t characters if it is cyclic. A de Bruijn
sequence has length |Σ|k, which is the minimum possible for covering all k-mers.

A de Bruijn graph of order k is a digraph in which for every possible k-mer
x1, . . . , xk there is a vertex denoted by [x1, . . . , xk]. An edge may exist from u
to v if u = [x1, . . . , xk] and v = [x2, . . . , xk+1]. Each edge represents a unique
(k + 1)-mer. For example, the edge (u, v) above represents (x1, . . . , xk+1). To
distinguish vertices from edges, we will use square brackets for vertices. Hence,
(x1, . . . , xk+1) is the edge between [x1, . . . , xk] and [x2, . . . , xk+1]. In a complete
de Bruijn graph all possible edges exist, each exactly once. Consequently, for
each vertex v the indegree and outdegree are |Σ|, and the graph is strongly
connected. Thus, a complete de Bruijn graph is Eulerian. Any Eulerian tour
represents a de Bruijn sequence of order k + 1.

The reverse of sequence (x1, . . . , xk), denoted R(x1, . . . , xk), is defined as
the sequence obtained by reversing the original sequence, i.e. R(x1, . . . , xk) =
(xk, . . . , x1). For example, R(CGAA) = AAGC. A sequence s is called a palin-
dromic sequence, or in short a palindrome, if s = R(s). For example, ACCA is a
palindrome. An homomorphic k-mer is composed of a single letter, e.g. AA . . . A.

https://github.com/yaronore/reverse-de-bruijn
https://github.com/yaronore/reverse-de-bruijn
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We define a reverse de Bruijn sequence of order k over alphabet Σ (RdB
sequence for short) as a sequence such that for each k-mer s, at least one of s
and R(s) are in the sequence. Note that unlike a regular de Bruijn sequence, the
definition of an RdB sequence does not require minimality. An RdB sequence is
optimal if it is of minimum length. An RdB sequence is cyclic, and can be easily
turned to a linear sequence by appending the first k − 1 characters.

Given a directed path F in a de Bruijn graph, its reverse path is defined as
the path R in which each edge (u, v) in F is replaced by the edge (R(v), R(u)).
For example, for the path ACG → CGG → GGT , its reverse is TGG →
GGC → GCA (see Fig. 1). We will refer to F and R as forward and reverse
paths, respectively.

Fig. 1. An illustration of forward and reverse paths (top and bottom, respectively).
The forward path traverses the edges in their direction. The corresponding reverse path
traverses the reverse edges in reverse direction.

3 Results

3.1 A Lower Bound for the Length of an RdB Sequence

We derive a lower bound for the length of an RdB sequence from k-mer counts.

Proposition 1. Denote n(k) the length of an optimal RdB sequence of order k.

n(k) ≥ 1
2

· (|Σ|k + |Σ|�(k+1)/2�) (1)

Proof. We derive the lower bound by counting palindromic and non-palindromic
edges. It depends on the number of k-mers that are palindromes, since each
palindrome must be represented by itself, while each non-palindromic k-mer can
be represented by either itself or its reverse. For even k the first k

2 characters
define the last k

2 characters of a palindrome. For odd k, the first k − 1
2 characters

define the last k − 1
2 , and the middle character can be any letter. Hence, there are

exactly |Σ|�(k+1)/2� different palindromes. In total, counting all palindromes and
half of all non-palindromes gives n(k) ≥ 1

2 · (|Σ|k − |Σ|�(k+1)/2�) + |Σ|�(k+1)/2�.
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3.2 A de Bruijn Graph Representing Two Reverse RdB Sequences

We give a sufficient and necessary condition for a de Bruijn graph to represent
two reverse RdB sequences. This will be useful to prove that no RdB can achieve
the lower bound. It will also be relevant for a de Bruijn graph edge augmenta-
tion we show below, as it will make a complete de Bruijn graph obtain these
properties. We take the viewpoint of a sequence represented as a path in a de
Bruijn graph. We first prove the following lemma:

Lemma 1. For every incoming non-homomorphic edge e into a palindromic
vertex, there is a unique outgoing edge e′ such that e′ = R(e).

Proof. Denote the vertex label as v = [x1, . . . , xk], which is equal to [xk, . . . , x1]
as it is a palindromic vertex. Denote an incoming edge by e = (y, x1, . . . , xk). Its
reverse is R(e) = (xk, . . . , x1, y), which is an outgoing edge from v. e = R(e) if
and only if e is homomorphic.

Theorem 1. The set of edges of de Bruijn graph G represents two reverse RdB
sequences ⇐⇒ de Bruijn graph G has the following properties:

1. All vertices in G are balanced.
2. G is strongly connected.
3. There is a perfect matching of edges and their reverse in G.
4. All palindromic vertices in G have an even in and outdegree (disregarding

homomorphic edges).

Proof. → Each k-mer in a sequence is an edge in the graph. As an RdB sequence
and its reverse are cyclic each vertex is entered and exited the same number of
times, and it follows that the vertices are balanced. As an RdB sequence and its
reverse cover all k-mers, all possible edges exist and it follows that the graph is
strongly connected. The edges of the paths representing the RdB sequence and
its reverse are in prefect matching of reverse edges with each other by definition of
forward and reverse paths. Last, by Lemma1 each palindromic vertex is entered
an exited by both paths at the same time. Thus, it must be entered and exited
an even number of times (disregarding homomorphic edges whose traversal does
not change the paths’ location).

← Given that de Bruijn graph G has the four properties, it has two reverse
paths that cover all of its edges. The paths enter and exit each vertex the same
number of times as the vertices are balanced. The paths cover together all edges
as the graph is strongly connected. The perfect matching is necessary to have
two reverse paths in the graph. Last, by Lemma 1 when the paths enter the
same vertex (palindromic vertices) they never reach a dead-end as there is an
even number of outgoing and incoming edges (disregarding homomorphic edges
whose traversal does not change the paths’ location).
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As a consequence, no RdB sequence can achieve the lower bound:

Corollary 1. There is no RdB sequence that achieves the lower bound.

Proof. Assume, contrary to the claim, that there is a reverse Bruijn sequence that
achieves the lower bound. Thus, the sequence and its reverse path are two edge-
disjoint paths in an augmented de Bruijn graph, where each original palindromic
edge is doubled and all other edges appear only once. The augmented graph
has vertices with unequal indegree and outdegree due to the augmentation of
palindromic edges, contradicting Theorem 1.

Give a graph with the listed properties we can apply an algorithm to find two
reverse paths that cover all edges. The algorithm is based on a modification of the
Euler tour algorithm [13] run on an augmented de Bruijn graph. The algorithm
for generating the sequence will work on an augmented de Bruijn graph of order
k − 1. We previously presented it [10] and repeat it here for sake of clarity.

Algorithm 1. Find forward and reverse paths that cover all edges in an aug-
mented de Bruijn graph G = (V,E) of order k − 1.

1. Initially all edges are unmarked, F = R = ∅, and A = {u}, an arbitrary vertex.
2. While A �= ∅ do
3. F = R = ∅. Pick any starting vertex v = [x1, . . . , xk−1] from A.
4. While there exists an unmarked edge e = (x1, . . . , xk) outgoing from v do
5. Append e to F . Prepend R(e) to R.
6. Mark e and R(e).
7. Set v = [x2, . . . , xk]; A = A ∪ {v}.
8. Remove v from A.
9. If F �= ∅, add F to F ; add R to R;
10. Merge the cycles in F to obtain a single forward path. Do the same for R.

Theorem 2. Algorithm1 returns in O(|V |) time forward and reverse paths that
cover together all edges of the augmented graph and represent two RdB sequences.

The algorithm and its proof are similar to that of a modified Euler tour
algorithm we previously presented [10] (and will not be repeated here). We first
show that if the forward path F reaches a dead-end, then so does the reverse
path R, and in that case a cycle is closed (note that each pair F , R constructed
in steps 4–7 are reverse paths by the way they are constructed). Then, we show
that the cycles in F can be merged into one cycle. Third, we deduce that a
strongly connected component is covered by F and R. Last, we conclude that F
and R cover all edges, since there is only one strongly connected component in
any de Bruijn graph. The only difference between the proofs is the case where
both paths enter the same vertex simultaneously and reach a dead-end.
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Lemma 2. If the forward traversal reaches a dead-end at a palindromic vertex,
then so does the reverse at the same vertex. Both paths close a cycle in this case.

Proof. Recall that when F reaches a palindromic vertex R must reach it a well,
and this is the only case where both paths reach a vertex together. By Lemma 1 a
palindromic vertex has even in and outdegrees (excluding homomorphic edges).
Denote by (x1, . . . , xk) an incoming edge used by F . Then, the reverse outgoing
edge, which is traversed by R, is (xk, . . . , x1). As it is a palindromic vertex, or
equivalently from the fact that both reach the vertex simultaneously, we get
that [x2, . . . , xk] = [xk, . . . , x2]. It follows that in all traversals of this vertex
F and R reach the vertex simultaneously. Hence, when F reaches a dead-end,
all incoming and outgoing edges were already traversed, and they are all of the
form (a, x2, . . . , xn) and (xn, . . . , x2, a), ∀a ∈ Σ. For each traversal of such pair of
incoming edges, a pair of outgoing edges is traversed. Thus, if the traversal ends
at the vertex, it must be that the traversal started from that vertex (otherwise,
there would have been unmarked outgoing edges to traverse). In other words,
both paths close a cycle in this case.

3.3 Constructing a Near-Optimal RdB Sequence in Linear Time

In this approach, for each palindromic edge, we add to a complete de Bruijn
graph all possible cyclic shifts of it. More formally, for even k let k = 2l. For
the palindrome e = (x1, . . . , xl, xl, . . . , x1) we add k edges corresponding to all
possible cyclic shifts of e. Similarly, for odd k let k = 2l + 1 we add all cyclic
shifts of (x1, . . . , xl, xl+1, xl, . . . , x1). Obviously, since these edges form a cycle, all
vertices remain balanced. The added edges match in reverse pairs. For each edge
that represents the cyclic shift starting at position i, for 1 < i < 
(k +1)/2�, the
matching edge starts at k+2−i. Hence, a perfect matching exists after adding the
new cycles. For even k, unless the k-mer is homomorphic, this cycle contains two
edges that are palindromes, (x1, . . . , xl, xl, . . . , x1) and (xl, . . . , x1, x1, . . . , xl), so
only one cycle is added for both, and the cycle doubles both palindromic edges.
In total, during the edge augmentation process, for each palindromic k-mer we
add at most k edges. For example, for the palindromes AGGA and GAAG we
add AGGA, GGAA, GAAG and AAGG (see Fig. 2). The added edges GGAA
and AAGG match each other as a reverse edge pair. The added palindromes
match the original edges in the graph. The resulting augmented graph contains
at most |Σ|k + k · |Σ|�(k+1)/2� edges, where the first term is the number of edges
in the original de Bruijn graph and the second is k edges for each palindrome.

In some cases, the number of added edges can be reduced. If the palin-
drome (x1, . . . , xk) is periodic, then the number of cyclic shifts needed to return
to the original k-mer is the length of the period. For example, the period of
ACCAACCA is 4. Only four edges suffice in this case, the edges ACCAACCA,
CCAACCAA, CAACCAAC and AACCAACC. So, each periodic palindrome
requires an addition of the number of edges equal to the length of its period.
Hence, a smaller augmented graph and a shorter RdB sequence can be obtained
by considering the different possible periods.
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Fig. 2. A cycle and edge matching. For the pair of palindromes AGGA and GAAG,
all cyclic shifts of these palindromes are added once (dashed edges). In the matching,
palindromic edges in the original cycle are paired with their added copies (encircled by
small red ovals). Other non-palindromic added edges are paired (encircled by a large
red oval). (Color figure online)

At the end of the above augmentation, an additional augmentation is required
to palindromic vertices with odd degrees. All palindromic vertices must have an
even in and outdegrees (disregarding homomorphic edges) by Lemma1. To make
sure all palindromic vertices have even degrees following the above augmentation,
all palindromic vertices with odd degrees are matched in pairs. Then, k − 1
edges connecting them in a cycle are added. This augmentation preserves degree
balance, graph connectivity, perfect matching of reverse edges and does not affect
degree of other palindromic vertices. Since there are at most |Σ|�k/2� palindromic
vertices, in this process at most (k − 1)|Σ|�k/2� edges are added.

Algorithm 1 produces two sequences, forward and reverse, each of which is an
RdB sequence (Fig. 3), in time linear in the size of the graph [10]. The length of
each of the produced sequences is the number of edges divided by two. For each
palindromic edge at most k edges were added. For each palindromic vertex 0 or
k−1 edges were added. So, the total length of the sequence is bounded by (|Σ|k+
k|Σ|�(k+1)/2�+(k−1)|Σ|�k/2�)/2. This is an addition of Θ(

√
L log(L)) characters,

where L denotes the lower bound in Proposition 1 for an RdB sequence of order
k. We call the augmentation process followed by Algorithm1 ReverseCAKE.

Figure 4A (and Table 1 in the Appendix) show the results of ReverseCAKE
for different values of k. As we can see, the sequence obtained by ReverseCAKE
is of length nearly half that of the original de Bruijn sequence. For example, for
k = 4 and amino acid alphabet, it is within 1 percent of 204/2 and within 220
characters from the lower bound.

3.4 Integer Linear Programming Formulation

We present an ILP formulation to calculate the minimum length RdB sequence.
There are |Σ|k integer variables Xi. Each Xi corresponds to the number of times
the k-mer occurs in the sequence.



162 Y. Orenstein

Fig. 3. An augmented de Bruijn graph of order 1 and an example of forward and reverse
paths in it. Palindromic edges AA, CC, GG and TT were added first as cyclic shifts
of all palindromes. Then, dashed edges AT , TA, CG and GC were added to turn odd
degree palindromic vertices to even degree. The blue and brown paths represent the
forward and reverse paths, respectively. Numbers on edges are the order of the edges
in the forward path. The sequences are ACCGAATGGCTT and TTCGGTAAGCCA
for forward and reverse paths, respectively. (Color figure online)

As we aim for the shortest sequence, the objective function is

min
|Σ|k∑

i=1

Xi (2)

The first constraint is the coverage constraint, which requires that all k-mers
occur in the sequence as themselves or their reverse. Let R(i) denote the reverse
of k-mer i, where we use the integer representation of a k-mer as a number in
radix |Σ|.

Xi + XR(i) ≥ 1 1 ≤ i ≤ |Σ|k (3)

The second constraint guarantees that the k-mer occurrences can form a
(cyclic) sequence. We require that for each (k − 1)-mer the number of k-mers
with that (k − 1)-mer in their suffix is equal to the number of k-mers with that
(k −1)-mer in their prefix (equivalent to a flow conservation constraint). Denote
px(i) and sx(i) the x-long prefix and suffix of i, respectively.

∑

sk−1(i′)=i

Xi′ =
∑

pk−1(i′)=i

Xi′ 1 ≤ i ≤ |Σ|k−1 (4)

We compared the memory usage and runtime of ReverseCAKE and the
ILP solver. The results are summarized in Fig. 4B and C (and Table 2 in the
Appendix). We used Gurobi ILP 7.5.2 solve to solve the ILP formulation [14].
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Running times and memory usages were benchmarked on a single CPU of a
20-CPU Intel Xeon E5-2650 (2.3 GHz) machine with 384 GB 2133 MHz RAM.
In all runs reported, the ILP solver reached an optimal solution. As expected,
the ILP solver requires much more time and memory. Our linear time algorithm
produces a sequence that is only negligibly longer, but in much shorter times
and using less memory.

4 Summary and Discussion

We studied the problem of constructing a minimum length sequence that covers
each k-mer by itself or its reverse. The problem has applications in constructing
dense amino acid peptide arrays for measuring protein-peptide interactions [1–
3]. Using on our solution researchers will be able to improve the utilization
of peptide arrays in high-throughput, universal and unbiased measurement of
peptide interactions.

The problem is challenging due to palindromes, which are the reverse of them-
selves and must appear in any sequence. We present a linear time near-optimal
algorithm ReverseCAKE to solve it. In practice, the length of the sequence pro-
duced by the algorithm nearly halves the total length of the sequence. It is very
close to the optimum as empirically shown by the integer linear programming
solutions. We believe that our results are of theoretical interest, and are applica-
ble in current and future technologies that require complete coverage of amino
acid k-mers under harsh space constraints.

Our study raises several open questions. Can one construct an optimal RdB
sequence in polynomial time? Second, what is the number of different optimal
RdB sequences? Third, can one design an optimal RdB sequence with improved
coverage of gapped k-mers in cases of gapped peptide interactions? Fourth, is
there a closed formula for the length of an optimal RdB sequence? Finally, in
current technologies, the de Bruijn (or RdB) sequence is cut into probes of length
p with overlap k − 1. There is no constraint that forces these probes to come
from a single sequence. What is the minimum number of sequences of length
p that cover all k-mers, each k-mer by itself or its reverse? Since our solution
for an RdB sequence covers a few k-mers more than once (as shown by the gap
between the theoretical lower bound and our solutions), a direct design of probe
sequences of length p might be able to reduce the number of probes needed to
cover all k-mers.
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Appendix

Fig. 4. Results and performance of ReverseCAKE and the ILP solver. (A) Results of
sequence lengths are portrayed as ratios to an original de Bruijn sequence (|Σ|k). The
lower bound is from Proposition 1. The dashed red line is at half. (B,C) Runtimes and
maximum memory usage of the algorithms, respectively. Y-axis is on a log-scale. (Color
figure online)
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Table 1. Lengths of reverse de Bruijn sequences produced by ReverseCAKE and an
ILP solver. The columns are organized as follows: (i) the alphabet, where aa stands for
amino acid; (ii) the length of a regular de Bruijn sequence that does not exploit reverse
peptide synthesis; (iii) the lower bound on RdB sequence length (Proposition 1); (iv–v)
the lengths of the sequence computed by ReverseCAKE (Sect. 3.3) and an ILP solver
that reached an optimal solution (Sect. 3.4); (vi) the saving factor is the ratio between
an optimal RdB sequence and a de Bruijn sequence.

k Alphabet de Bruijn Lower bound ReverseCAKE ILP (optimal) Saving factor

2 DNA 16 10 12 12 0.75

3 DNA 64 40 52 44 0.69

4 DNA 256 136 148 148 0.58

5 DNA 1, 024 544 664 576 0.56

6 DNA 4, 096 2, 080 2, 180 2, 156 0.53

7 DNA 16, 384 8, 320 9, 076 8, 584 0.52

8 DNA 65, 536 32, 896 33, 276 33, 276 0.51

9 DNA 262, 144 131, 584 135, 628 133, 064 0.51

2 aa 400 210 220 220 0.55

3 aa 8, 000 4, 200 4, 580 4, 220 0.53

4 aa 160, 000 80, 200 80, 420 80, 420 0.50

Table 2. Performance evaluation of ReverseCAKE and an ILP solver. The runtime
and maximum memory usage are reported in seconds (sec) and kilobytes (KB).

k Alphabet ReverseCAKE (sec) ReverseCAKE (KB) ILP (sec) ILP (KB)

2 DNA 0.11 39, 456 0.13 50, 608

3 DNA 0.10 38, 964 0.13 52, 496

4 DNA 0.13 42, 456 0.25 58, 308

5 DNA 0.15 45, 928 0.39 67, 236

6 DNA 0.19 52, 036 2.50 114, 118

7 DNA 0.33 81, 476 34.43 310, 752

8 DNA 0.76 191, 828 665.15 875, 740

9 DNA 2.38 579, 220 17, 592.82 1, 622, 996

2 aa 0.10 41, 804 0.24 56, 800

3 aa 0.32 55, 336 2.18 115, 272

4 aa 0.92 203, 548 1, 963.64 982, 124
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Abstract. Trees have long been used as a graphical representation
of species relationships. However complex evolutionary events, such as
genetic reassortments or hybrid speciations which occur commonly in
viruses, bacteria and plants, do not fit into this elementary frame-
work. Alternatively, various network representations have been devel-
oped. Circular networks are a natural generalization of leaf-labeled trees
interpreted as split systems, that is, collections of bipartitions over
leaf labels corresponding to current species. Although such networks
do not explicitly model specific evolutionary events of interest, their
straightforward visualization and fast reconstruction have made them
a popular exploratory tool to detect network-like evolution in genetic
datasets. Standard reconstruction methods for circular networks, such
as Neighbor-Net, rely on an associated metric on the species set. Such a
metric is first estimated from DNA sequences, which leads to a key dif-
ficulty: distantly related sequences produce statistically unreliable esti-
mates. This is problematic for Neighbor-Net as it is based on the pop-
ular tree reconstruction method Neighbor-Joining, whose sensitivity to
distance estimation errors is well established theoretically. In the tree
case, more robust reconstruction methods have been developed using
the notion of a distorted metric, which captures the dependence of the
error in the distance through a radius of accuracy. Here we design the
first circular network reconstruction method based on distorted metrics.
Our method is computationally efficient. Moreover, the analysis of its
radius of accuracy highlights the important role played by the maximum
incompatibility, a measure of the extent to which the network differs
from a tree.

Keywords: Phylogenetic networks · Circular networks
Finite metrics · Split decomposition · Distance-based reconstruction
Distorted metrics

1 Introduction

Trees have long been used to represent species relationships [1–3]. The leaves of
a phylogenetic tree correspond to current species while its branchings indicate
past speciation events. However, complex evolutionary events, such as genetic
reassortments or hybrid speciations, do not fit into this elementary framework.
Such non-tree-like events play an important role in the evolution of viruses,
c© Springer International Publishing AG, part of Springer Nature 2018
B. J. Raphael (Ed.): RECOMB 2018, LNBI 10812, pp. 167–176, 2018.
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bacteria and plants. This issue has led to the development of various notions of
phylogenetic networks [4].

A natural generalization of phylogenetic trees is obtained by representing
them as split networks, that is, collections of bipartitions over the species set.
On a tree whose leaves are labeled by species names, each edge can be thought
of as a bipartition over the species: removing the edge produces exactly two
connected components. In this representation, trees are characterized by the fact
that their splits have a certain compatibility property [5]. More generally, circular
networks relax this compatibility property, while retaining enough structure to
be useful as representations of evolutionary history [6]. Such networks are widely
used in practice. Although they do not explicitly model specific evolutionary
events (see, e.g., [7] for a discussion), their straightforward visualization and fast
reconstruction have made them a popular exploratory tool to detect network-
like evolution in genetic datasets [8]. They are also useful in cases where data is
insufficient to single out a unique tree-like history, but instead supports many
possible evolutionary scenarios.

Standard reconstruction methods for circular networks, such as the Neighbor-
Net algorithm introduced in [9], rely on a metric on the species set. Such a met-
ric, which quantifies how far apart species are in the Tree of Life, is estimated
from genetic data. Very roughly, it counts how many mutations separate any
two species. This leads to a key difficulty: under standard stochastic models of
DNA evolution, distantly related sequences are known to produce statistically
unreliable distance estimates [10,11]. This is problematic for Neighbor-Net, in
particular, as it is based on the popular tree reconstruction method Neighbor-
Joining, whose sensitivity to distance estimation errors is well established theo-
retically [12].

In the tree case, more robust reconstruction methods were developed using
the notion of a distorted metric which captures the dependence of the error in
the distance through a radius of accuracy [13,14]. A key insight to come out of
this line of work, starting with the seminal results of [10,11], is that a phyloge-
netic tree can be reconstructed using only a subset of the pairwise distances—
those less than roughly the chord depth of the tree. Here the chord depth of
an edge is the shortest path between two leaves passing through that edge and
the chord depth of the tree is the maximum depth among its edges. This result
is remarkable because, in general, the depth can be significantly smaller than
the diameter. As a consequence, a number of results have been obtained show-
ing that, under common stochastic models of sequence evolution, a polynomial
amount of data suffices to reconstruct a phylogenetic tree with bounded branch
lengths. See e.g. [15–18]. This approach has also inspired practical reconstruction
methods [19,20].

Here we design the first reconstruction method for circular networks based
on distorted metrics. In addition to generalizing the chord depth, we show that,
unlike the tree case, pairwise distances within the chord depth do not in gen-
eral suffice to reconstruct these networks. We introduce the notion of maximum
incompatibility, a measure of the extent to which the network differs from a tree,
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to obtain a tight (up to a constant) bound on the required radius of accuracy.
Before stating our main results, we provide some background on split networks.

2 Background

We start with some basic definitions. See [4] for an in-depth exposition.

Definition 1 (Split networks [6]). A split S = (S1, S2) on a set of taxa X
is an unordered bipartition of X into two non-empty, disjoint sets: S1, S2 ∈ X ,
S1 ∩ S2 = ∅, S1 ∪ S2 = X . We say that N = (X ,S, w) is a weighted split
network (or split network for short) on a set of X if S is a set of splits on
X and w : S → (0,∞) is a positive split weight function. We assume that any
two splits S(1) = {S

(1)
1 , S

(1)
2 }, S(2) = {S

(2)
1 , S

(2)
2 } in S are distinct, that is,

S
(1)
1 �= S

(2)
1 , S

(2)
2 .

For any x, y ∈ X , we let S|x,y be the collection of splits in S separating x and
y, that is,

S|x,y = {S ∈ S : δS(x, y) = 1},

where δS(x, y), known as the split metric, is the indicator of whether S = (S1, S2)
separates x and y

δS(x, y) =
{

0, if x, y ∈ S1 or x, y ∈ S2.
1. otherwise. (1)

For a split S ∈ S|x,y, we write S = {Sx, Sy} where x ∈ Sx and y ∈ Sy. For
simplicity, we assume that S|x,y �= ∅ for all x, y ∈ X . (Taxa not separated by a
split can be identified.)

Let T = (V,E) be a binary tree with leaf set X and non-negative edge weight
function w : E → [0,+∞). We refer to T = (X , V, E,w) as a phylogenetic tree.
Any phylogenetic tree can be represented as a weighted split network. For each
edge e ∈ E, define a split on X as follows: after deleting e, the vertices of T
form two disjoint connected components with corresponding leaf sets S1 and
S2; we let Se = {S1, S2} be the split generated by e in this way. Conversely,
one may ask: given a split network N = (X ,S, w), is there a phylogenetic tree
T = (X , V, E,w) such that S = {Se : e ∈ E} (with w(Se) = w(e))? To answer
this question, we need the concept of compatibility.

Definition 2 (Compatibility [21]). Two splits S(1) = {S
(1)
1 , S

(1)
2 } and S(2) =

{S
(2)
1 , S

(2)
2 } are called compatible, if at least one of the following intersections

is empty:

S
(1)
1 ∩ S

(2)
1 , S

(1)
1 ∩ S

(2)
2 , S

(1)
2 ∩ S

(2)
1 , S

(1)
2 ∩ S

(2)
2 .

We write S(1) ∼ S(2) to indicate that S(1) and S(2) are compatible. Otherwise, we
say that the two splits are incompatible. A set of splits S is called compatible
if all pairs of splits in S are compatible.
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In words, for any two splits, there is one side of one and one side of the other
that are disjoint. The following result was first proved in [21]. Given a split
network N = (X ,S, w), there is a phylogenetic tree T = (X , V, E,w) such that
S = {Se : e ∈ E} if and only if S is compatible. For a collection of splits
S(1), . . . , S(�) on X , we let

CN (S(1), . . . , S(�)) = {S ∈ S : S ∼ S(i),∀i}, (2)

be the set of splits of N compatible with all splits in S(1), . . . , S(�), and we let

IN (S(1), . . . , S(�)) = {S ∈ S : ∃i, S � S(i)}, (3)

be the set of splits of N incompatible with at least one split in S(1), . . . , S(�).
We drop the subscript N when the network is clear from context.

Most split networks cannot be realized as phylogenetic trees. The following
is an important special class of more general split networks.

Definition 3 (Circular networks [6]). A collection of splits S on X is called
circular if there exists a linear ordering (x1, . . . , xn) of the elements of X for S
such that each split S ∈ S has the form:

S = { {xp, . . . , xq} , X − {xp, . . . , xq} }

for 1 < p ≤ q ≤ n. We say that a split network N = {X ,S, w} is a circular
network if S is circular.

Phylogenetic trees, seen as split networks, are special cases of circular networks
(e.g. [4]). Circular networks have the appealing feature that they cannot contain
too many splits. Indeed, let N = (X ,S, w) be a circular network with |X | = n.
Then |S| = O(n2) [6]. In general, circular networks are harder to interpret than
trees are. In fact, they are not meant to represent explicit evolutionary events.
However, they admit an appealing visualization in the form of an outer-labeled
(i.e., the taxa are on the outside) planar graph that gives some insight into how
“close to a tree” the network is. As such, they are popular exploratory analysis
tools. We will not describe this visualization and how it is used here, as it is
quite involved. See, e.g., [4, Chap. 5] for a formal definition and [8] for examples
of applications.

Split networks are naturally associated with a metric. We refer to a function
d : X × X → [0,+∞] as a dissimilarity over X if it is symmetric and d(x, x) = 0
for all x.

Definition 4 (Metric associated to a split network). Let N = (X ,S, w)
be a split network. The dissimilarity d : X × X → [0,∞) defined as follows

d(x, y) =
∑

S∈S|x,y

w(S),

for all x, y ∈ X , is referred to as the metric associated to N . (It can be shown
that d is indeed a metric. In particular, it satisfies the triangle inequality.)
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The metric associated with a circular network can be used to reconstruct it.

Definition 5 (d-splits). Let d : X × X → [0,∞) be a dissimilarity. The iso-
lation index αd(S) of a split S = {S1, S2} over X is given by

αd(S) = min{α̃d(x1, y1|x2, y2) : x1, y1 ∈ S1, x2, y2 ∈ S2},

where

α̃d(x1, y1|x2, y2) =
1
2
(max{d(x1, y1) + d(x2, y2), d(x1, x2) + d(y1, y2),

d(x1, y2) + d(y1, x2)} − d(x1, y1) − d(x2, y2)).

(Note that the latter is always non-negative.) We say that S is a d-split if
αd(S) > 0.

The following result establishes that circular networks can be reconstructed from
their associated metric.

Lemma 1 (d-splits and circular networks [6]). Let X be a set of n taxa
and let N = (X ,S, w) be a circular network with associated metric d. Then S
coincides with the set of all d-splits of N = (X ,S, w). Further the isolation index
αd(S) equals w(S) for all S ∈ S.

The split decomposition method reconstructs N = (X ,S, w) from d in poly-
nomial time. When N is compatible, d is an additive metric. See e.g. [2,5].

In practice one obtains an estimate d̂ of d, called the distance matrix,
from DNA sequences, e.g., through the Jukes-Cantor formula [22] or the log-
det distance [23]. The accuracy of this estimate depends on the amount of data
used [10,11]. In previous work in the context of tree reconstruction, distorted
metrics were used to encode the fact that large d-values typically produce unre-
liable d̂-estimates.

Definition 6 (Distorted metrics [13,14]). Suppose N = (X ,S, w) is a split
network with associated metric d. Let τ,R > 0. We say that a dissimilarity
d̂ : X × X → [0,+∞] is a (τ,R)-distorted metric of N if d̂ is accurate on
“short” distances, that is, for all x, y ∈ X

d(x, y) < R + τ or d̂(x, y) < R + τ =⇒ |d(x, y) − d̂(x, y)| < τ.

We refer to τ and R as the tolerance and accuracy radius of d̂ respectively.

Distorted metrics have previously been motivated by analyzing Markov models
on trees that are commonly used to model the evolution of DNA sequences [10,
11]. Such models have also been extended to split networks [24].

3 Main Results

By the reconstruction result mentioned above, any circular network N =
(X ,S, w) with associated metric d can be reconstructed from a (τ,R)-distorted
metric where τ is 0 and R is greater or equal than the diameter max{d(x, y) :
x, y ∈ X} of N . In the tree case, it has been shown that a much smaller R
suffice [10,11,14,17]. Here we establish such results for circular networks.
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Chord depth and maximum incompatibility. To bound the tolerance and accu-
racy radius needed to reconstruct a circular network from a distorted metric,
we introduce several structural parameters. The first two parameters generalize
naturally from the tree context.

Definition 7 (Minimum weight). Let N = (X ,S, w) be a split network. The
minimum weight of N is given by

εN = min{w(S) : S ∈ S}.

Let N = (X ,S, w) be a split network with associated metric d. For a subset of
splits A ⊆ S, we let

d(x, y;A) =
∑

S∈S|x,y∩A
w(S), (4)

be the distance between x and y restricted to those splits in A.

Definition 8 (Chord depth). Let N = (X ,S, w) be a split network with asso-
ciated metric d. The chord depth of a split S ∈ S is

ΔN (S) = min {d(x, y;CN (S)) : x, y ∈ X such that S ∈ S|x,y} ,

and the chord depth of N is the largest chord depth among all of its splits

ΔN = max {ΔN (S) : S ∈ S} .

It was shown in [17, Corollary 1] that, if N = (X ,S, w) is compatible, then a
(τ,R)-distorted metric with τ < 1

4εN and R > 2ΔN + 5
4εN suffice to reconstruct

N in polynomial time (among compatible networks).
For more general circular networks, the minimum weight and chord depth

are not sufficient to characterize the tolerance and accuracy radius required for
reconstructibility; see Example 1 below. For that purpose, we introduce a new
notion that, roughly speaking, measures the extent to which a split network
differs from a tree.

Definition 9 (Maximum incompatibility). Let N = (X ,S, w) be a split
network. The incompatible weight of a split S ∈ S is

ΩN (S) =
∑

S′∈I (S)

w(S′),

and the maximum incompatibility of N is the largest incompatible weight
among all of its splits

ΩN = max{ΩN (S) : S ∈ S}.

We drop the subscript in εN , ΔN and ΩN when the N is clear from context.
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Statement of results. We now state our main result.

Theorem 1. NetworkReconstruction Suppose N = (X ,S, w) is a circular net-
work. Given a (τ,R)-distorted metric with τ < 1

4εN and R > 3ΔN +7ΩN + 5
2εN ,

the split set S can be reconstructed in polynomial time together with weight esti-
mates ŵ : S → (0,+∞) satisfying |ŵ(S) − w(S)| < 2τ .

Establishing robustness to noise of circular network reconstruction algorithms is
important given that, as explained above, such networks are used in practice to
tentatively diagnose deviations from tree-like evolution. Errors due to noise can
confound such analyses. See e.g. [8] for a discussion of these issues.

In [17, Sect. 4], it was shown that in the tree case the accuracy radius must
depend linearly on the depth. The following example shows that the accuracy
radius must also depend linearly on the maximum incompatibility.

Example 1 (Depth is insufficient; linear dependence in maximum incompatibility
is needed). Consider the two circular networks in Fig. 1. In both networks,
X = {x1, x2, y1, y2} ∪ {z0, z1, . . . , zn}, and the n vertical lines, the horizontal
line, and the two arcs are splits of weight 1. The chord depth of both networks
is 1 while their maximum incompatibility is n. In both networks

– d(zi, xj) = i + 1, 0 ≤ i ≤ n, 1 ≤ j ≤ 2,
– d(zi, yj) = n − i + 1, 0 ≤ i ≤ n, 1 ≤ j ≤ 2,
– d(x1, x2) = d(y1, y2) = 2,
– d(x1, y2) = d(x2, y1) = n + 2.

The only difference is that, in graph (A), d(x1, y1) = n + 2 and d(x2, y2) = n
while, in graph (B), d(x2, y2) = n+2 and d(x1, y1) = n. If we choose the distance
matrix d̂ as follows:

– d̂(x1, y1) = d̂(x2, y2) = n + 1,
– d̂ = d for all other pairs,

then d̂ is a (τ, n−1)-distorted metric of both networks for any τ ∈ (0, 1). Hence,
these two circular networks are indistinguishable from d̂. Observe that the chord
depth is 1 for any n, but the maximum incompatibility can be made arbitrary
large. (Note that the claim still holds if we replace the chord depth with the
“full chord depth” max{min{d(x, y) : x, y ∈ X , S ∈ S|x,y} : S ∈ S}, which also
includes weights of incompatible splits separating x and y.)

Proof idea. Our proof of Theorem 1 is based on a divide-and-conquer approach
of [17], first introduced in [14] and also related to the seminal work of [10,
11] on short quartet methods and the decomposition methods of [19,20]. More
specifically, we first reconstruct sub-networks in regions of small diameter. We
then extend the bipartitions to the full taxon set by hopping back from each
taxon to this small region and recording which side of the split is reached first.
However, the work of [17] relies heavily on the tree structure, which simplifies
many arguments. Our novel contributions here are twofold:
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Fig. 1. Two circular networks indistinguishable from a distorted metric with sublinear
dependence on the maximum incompatibility. Here the taxa are ordered on a circle
and lines indicate splits. For instance, in (A), the leftmost vertical line is the split
with {z0, x1, x2} on one side and all other taxa on the other. In both networks, X =
{x1, x2, y1, y2} ∪ {z0, z1, . . . , zn}, and the n vertical lines, the horizontal line, and the
two arcs are splits of weight 1.

– We define the notion of maximum incompatibility and highlight its key role
in the reconstruction of circular networks, as we discussed above.

– We extend the effective divide-and-conquer methodology developed in [10,11,
14,17,19,20] to circular networks. The analysis of this more general class of
split networks is more involved than the tree case. In particular, we introduce
the notion of a compatible chain—an analogue of paths in graphs—which
may be of independent interest in the study of split networks.

Details are provided in [25].
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10. Erdös, P.L., Steel, M.A., Székely, L.A., Warnow, T.A.: A few logs suffice to build
(almost) all trees (part 1). Random Struct. Algorithms 14(2), 153–184 (1999)
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Abstract. The growing number of RNA-mediated regulation mecha-
nisms identified in the last decades suggests a widespread impact of
RNA-RNA interactions. The efficiency of the regulation relies on highly
specific and coordinated interactions, while simultaneously repressing the
formation of opportunistic complexes. However, the analysis of RNA
interactomes is highly challenging due to the large number of potential
partners, discrepancy of the size of RNA families, and the inherent noise
in interaction predictions.

We designed a recursive 2-step cross-validation pipeline to cap-
ture the specificity of ncRNA-mRNA interactomes. Our method has
been designed to detect significant loss or gain of specificity between
ncRNA-mRNA interaction profiles. Applied to snoRNA-mRNA in Sac-
charomyces Cerevisae, our results suggest the existence of a repression of
ncRNA affinities with mRNAs, and thus the existence of an evolutionary
pressure inhibiting such interactions.

Keywords: RNA · RNA-RNA interaction · Ensemble learning

1 Introduction

Evidence of the breadth of the role of ribonucleic acids in gene regulation are
now multiplying. For instance, in eukaryotes microRNAs bind mRNAs to control
gene expression [1], and in prokaryotes the OxyS RNA interacts with the fhlA
mRNA to prevent ribosome binding and thus inhibit translation [2].

Among all non-coding RNAs (ncRNAs) already identified, the category of
small nucleolar RNAs (snoRNAs) is of particular interest. snoRNAs form a large
class of well-conserved small ncRNAs that are primarily associated with chemi-
cal modifications in ribosomal RNAs (rRNAs) [3]. Recent studies revealed that
orphan snoRNAs can also target messenger RNAs (mRNAs) in humans [4] and
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mice [5], and probably contribute to regulate expression levels. However, despite
recent investigations there are to date no evidence that similar snoRNA-mRNA
interactions occur in simpler unicellular microorganisms [6,7].

Interestingly, it turns out that RNA-based gene regulation mechanisms have
been primarily linked to higher eukaryotes [8], although it is still not clear if
this observation results from an incomplete view of RNA functional landscape
or the existence of a negative pressure preventing RNA to interfere with other
transcripts.

Our understanding of RNA-mediated regulation mechanisms significantly
improved in recent years. In addition to well-documented molecular pathways
(e.g. [2]), regulation can also occur at a higher level through global affinities
between ncRNAs and mRNAs populations [9]. Furthermore, Umu et al. [10]
showed another intriguing, yet complementary, level of control of gene expres-
sion that could explain discrepancies previously observed between expressions
of mRNAs and the corresponding protein expressions in bacteria [11,12]. In
their study, the researchers extracted a signal suggesting a negative evolution-
ary pressure against random interactions between ncRNAs and mRNAs that
could reduce translation efficiency. However, these results cannot be trivially
extended to eukaryotes where the role of the nucleus has to be considered.

In this study, we investigate this phenomenon of avoidance of random interac-
tions between ncRNA and mRNA in Saccharomyces Cerevisae. In particular, we
focus our analysis on the bipartite interactome between snoRNAs and mRNAs.
Indeed, the snoRNA family is an ancient and large class of ncRNAs for which the
mechanism of mRNA avoidance could explain the absence of known interactions
between snoRNAs and mRNAs in unicellular eukaryotes.

A major challenge of this analysis stems from severely unbalanced datasets.
While we retrieve more than 6000 annotated mRNAs, we could only recover
less than one hundred snoRNAs [13]. Such disparity is a serious source of bias
that should be carefully addressed. Therefore, we developed a customized ensem-
ble learning pipeline to quantify the specificity of RNA binding profile between
unbalanced RNA families.

First, we use state-of-the-art prediction tools to compute the snoRNA-mRNA
interactome as the set of all interactions between snoRNAs and mRNAs. Then,
we design an ensemble learning pipeline to identify statistically significant biases
in the distribution of binding affinities between classes of RNAs. Importantly, in
order to remove any possible source of bias during the parametrization of classi-
fiers, we introduce a second level of Leave-One-Out Cross-Validation (LOOCV)
to avoid overfitting. Our results reveal that although classes of snoRNAs exhibit
preferential interaction patterns with mRNAs, this selective pressure is not as
strong as initially anticipated. It corroborates previous hypothesis on prokary-
otes, and suggests the presence of a phenomenon of avoidance of random inter-
actions between ncRNAs and mRNAs in single-celled eukaryotes.
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2 Approach

We aim to characterize the strength and specificity of random ncRNA-mRNA
interactions in Saccharomyces Cerevisae, although our work primarily focuses on
snoRNA-mRNA interactions. Our data set includes smaller categories of ncRNAs
(e.g. spliceosomal RNAs) used for an additional control of our results.

We computed ncRNA-mRNA interactomes from ncRNAs and mRNAs
sequences using two different state-of-the-art computational prediction tools
(RNAup [14] and intaRNA [15]). Those predictions are to serve as an approxi-
mation for the propensity of those ncRNAs to form crosstalk interactions with
mRNAs. By using an ensemble learning pipeline, we approximated the speci-
ficities of interaction profiles in those interactomes. We also approximated the
specificities of ncRNAs sequences with machine learning upon the Kmer compo-
sitions of the said sequences. The comparison of the approximated specificities
highlights a global pressure inhibiting the affinity ncRNA-mRNA interactions in
Saccharomyces Cerevisae.

We finally completed this work by a collection of complementary control tests
providing a better understanding of the limitations of this work. Data, code, raw
results and supplementary displays are available at http://jwgitlab.cs.mcgill.ca/
Antoine/nested loocv pipeline/tree/master.

3 Methods

3.1 Dataset

Saccharomyces Cerevisae. We focus our study on a single organism: Saccha-
romyces Cerevisae. Working on a single organism ensures that all the molecules
co-evolved and that their interactions were under the same evolutionary pressure.
We also focus our study on a eukaryote to investigate the influence of the nucleus.
Indeed, the nuclear membrane creates a confined environment that segregates
molecules. Moreover, eukaryotes usually display more complex mechanisms and
have more coding sequences than prokaryotes and archaea. Extending the study
to a family instead or even further, like Umu et al. [10] did for instance, has
been considered. However, less data are available for other related yeasts and
including more species increases the number of parameters to consider. We came
to the conclusion that a multi-species study, while being interesting, was unre-
alistic yet. Finally, we excluded multicellular organisms to avoid problematic
phenomenons like specialized tissues.

For all those reasons, this study required a unicellular eukaryote offering
a satisfying number of identified RNA sequences and Saccharomyces Cerevisae
appeared to be the most suited model by being a model eukaryote organism with
the greatest number of annotated sequences amongst unicellular eukaryotes.

All sequences have been obtained from the manualy curated Genolevure [13]
database.

http://jwgitlab.cs.mcgill.ca/Antoine/nested_loocv_pipeline/tree/master
http://jwgitlab.cs.mcgill.ca/Antoine/nested_loocv_pipeline/tree/master
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ncRNA-mRNA Interactome. Our main source of features is the ncRNA-
mRNA interactome i.e. all the ncRNA-mRNA interactions. Noticeably, we are
referring to ncRNA-mRNA interactions as computational predictions instead
of experimentally observed interactions. The probability of such event is con-
ventionally approximated by the energy barrier and difference of entropy (Δg)
between the structures of the two molecules and the structure of a potential
complex [14]. We work under the usual and reasonable assumption that, for two
complexes i and j, if Δgi < Δgj then the complex i is more stable than the com-
plex j and thus is more likely to form and be observed. In order to study the set
of all potential ncRNA-mRNA complexes, we computed for all {ncRNA,mRNA}
pairs the corresponding Δg using prediction tools (cf. Sect. 3.2), thus resulting
in two predicted ncRNA-mRNA interactomes: one for each prediction tool we
used (See Sect. 3.2).

We focused our study on ncRNA-mRNA interactome for two reasons. First,
the role of mRNA as temporary medium of genetic material makes it a central
element in most cellular pathways. mRNAs are centrepieces of several mecha-
nisms such as regulation [10–12] and splicing that might be impacted by crosstalk
interactions. Second, ncRNAs (i.e. non-coding RNA, which refers here to RNA
which are neither messenger, transfer or ribosomal RNA and also excludes
miRNA and siRNA cf. Sect. 3.1) offer properties of interest for this study.

Indeed, the selected ncRNAs can be clustered into categories sharing simi-
lar properties, such as structure and length, which makes any comparison more
meaningful. Those ncRNAs are also free from cellular mechanisms such as matu-
ration or directed export that might generate noise. Finally, there is no observed
interaction between those ncRNAs and mRNAs. As a consequence we can assume
than the interaction we predict are opportunistic and not part of a defined bio-
logical pathway. A detailed description of ncRNAs labels is provided in Sect. 3.1
and in the supplementary material.

We also considered two other practical aspects in this decision: maximizing
the number of available annotated sequences and maximizing the number of
crosstalk interactions (i.e. minimizing the number of known interactions). The
first aspect directly impacts the statistical validity of any potential results and
the second is justified by the goal of this study. The ncRNA-mRNA interactome
also satisfies those two aspects.

ncRNA Labels. In order to conduct this study, we had to choose which of
the mRNAs or ncRNA to label. The absence of structural properties in mRNA
naturally inclined us to label ncRNA instead. We produced a 5-label classifica-
tion (cf. Table 1) according to the gene ontologies based on both functional and
structural properties. Out of those five labels, two labels happen to be much
more similar in terms of lengths and numbers. As a consequence, we performed
all our tests with both the five labels dataset and a dataset limited to those two
similar labels and are providing displays for both.
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Table 1. Numbers for both 5-label and 2-label datasets, means and standard deviations
of distributions of sequence lengths and the colours associated in our displays for each
ncRNA label

ncRNA Dataset Length colour
Label 5 labels 2 labels μ σ

miscellaneous 11 0 900.27 828.04 black
C/D box 45 45 106.87 34.41 red

H/ACA box 29 29 270.83 176.75 blue
spliceosomal 5 0 245.60 183.40 yellow
unknown 7 0 500.14 225.31 green
total 97 74 281.39 383.93

A complete description of all those ncRNA is available in the supplementary
material. For the sake of clarity, we will only provide a shorter description of
each label in this paper.

C/D box and H/ACA box ncRNAs are snoRNAs (small nucleolar RNA)
involved in pre-rRNA maturation by performing two different modifications of
specific bases. C/D box snRNAs are performing pseudouridylation, an isomer-
ization of uridines into pseudouridines. Pseudouridines have an extra NH group
able to form supplementary hydrogen bonds. Those bonds stabilize rRNA struc-
ture [16, p. 200]. H/ACA box snRNAs are performing 2-O methylation, a methy-
lation of the ribose. RNA has a short lifespan compared to DNA. By methylat-
ing the ribose, the rRNA is less vulnerable to degradation by bases or RNAses.
In addition to this increased lifespan, this modification also impacts the rRNA
structure by changing spatial constraints and decreasing the number of hydrogen
bonds the modified base can form [16, p. 200].

Those two labels are the most consistent, both in numbers and internal sim-
ilarities with both sequential constraints (boxes) and similar structures common
to all the ncRNAs of a given label. Moreover, the lengths of ncRNAs are consis-
tent inside each label and shorter than the ncRNA average (cf. Fig. 4).

Importantly, we will use these two groups (i.e. C/D box and H/ACA box
ncRNAs) to study the existence of an evolutionary pressure on snoRNAs. The
other groups described below will be used as control and/or to suggest the gen-
eralization of the pressure to other classes of ncRNAs.

Spliceosomal ncRNAs share the common trait of being involved in the splicing
process. However all other properties vary.

Miscellaneous ncRNAs have been identified and their functions are known.
However those functions are too specific and diverse to be gathered in any label
but Miscellaneous. Moreover all other properties vary.

Unknown ncRNAs have been identified but, unlike miscellaneous ncRNAs,
their functions remain unknown. Moreover all other properties vary in an even
wider range than the two previous labels.
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3.2 Features Description

This section describes the three metrics used in this study to produce the main
sets of features: RNAup, IntaRNA and Kmer composition similarity. Other basic
features used as control, such as sequence length, are not described as they are
straightforward.

RNA-RNA Interactions Prediction Tools. In order to produce a satis-
fying interactome we use two different RNA-RNA interaction prediction tools:
RNAup [14] and IntaRNA [15,17]. We selected nonspecialized prediction tools
over specialized ones such as RNAsnoop [18] as we are interested in non-specific
interaction.

Both RNAup and IntaRNA implement the same core strategy. They compute
the hybridization energies between the two RNAs as well as the accessibility
(i.e. probability of being unpaired) for each interaction site. Those values are
then combined to score potential interaction sites. The highest scoring sites
are returned together with the free energy of binding. We can then retrieve the
secondary structures of each individual RNA using constraint folding algorithms.

RNAup strictly implements this strategy thus predicting the optimal mini-
mum free energy (MFE) compatible with the axioms. IntaRNA differs by two
aspects. The first one is that the version of IntaRNA used in this work uses
a slightly less recent version of Turner energies model. However the differences
between those versions are minor and are very unlikely to produce the observed
dissimilarities. The second one is that IntaRNA adds a seeding step to reject
interaction sites deemed unlikely. This extra step reduces the search space by
focusing on the most promising ones and significantly reduces the runtimes com-
pared to RNAup. An extensive description of the seeding procedure is presented
by Bush et al. [17]. Comparative benchmarks place IntaRNA in the top of pre-
diction tools with better scores than RNAup [19,20]. Indeed, IntaRNA appears
to predict interactions closer to the observed ones compared to predictions from
others prediction tools, including RNAup. As a consequence this heuristic seems
well founded and efficient.

In this study we used this difference between RNAup and IntaRNA to pre-
dict two slightly different interactions modes. For each {ncRNA,mRNA} pair,
we are assuming that RNAup outputs the optimal MFE regardless of its likeli-
hood while IntaRNA outputs a probably weaker but more realistic interaction.
Since realistic interactions are more likely to be observed in the cell than the
theoretical optimums, any pressure should impact the first before the second.
As a consequence, we aimed at highlighting such pressure by studying those two
sets of interactions in parallel.

Kmer Composition Similarity. In addition to the two prediction tools men-
tioned in the previous subsection, we use a third metric: the similarity of the
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Kmer composition of ncRNA sequences. The term Kmer refers here to every pos-
sible sequence of nucleobasis of length K. This metric associates to each ncRNA
the distribution of each Kmer in its sequence, including repetitions. The set of
all those distributions is gathered as a vector space suitable for machine learn-
ing (cf. Sect. 3.3). We produced this third set of features in order to assess the
specificity of the sequence and to provide a reference point to the two other sets
of features.

All experiments involving Kmers have been made with K = 5 for two reasons.
The first one is that five is the length of the average interacting zone in RNA-
RNA interactions and so is a suitable length to capture any key subsequences
impacting those interactions. The second one is that the number of Kmers to
consider grows with the value of K. K = 5 offers the advantage of being both
manageable in term of cost and also results in a number of dimensions com-
parable to the two other methods (i.e. RNAup and IntaRNA). We performed
preliminary tests with others values, especially K = 6. Those tests showed little
to no differences.

3.3 Ensemble Learning Pipeline

The overall goal of our machine learning approach is to investigate a possible
bias affecting ncRNA-mRNA crosstalk interactions. In order to do so, we com-
pare the specificity of ncRNA sequences with the specificity of ncRNA-mRNA
interaction profiles. The specificity of ncRNA sequences is approximated by the
ability of classifiers to predict the labels of ncRNAs from their Kmer composi-
tion. ncRNA-mRNA interaction profiles are predicted using prediction tools and
their specificity is approximated by the ability of classifiers to predict the labels
of ncRNAs from those profiles (Fig. 1).

Fig. 1. Illustration of our ensemble learning pipeline. The process starts from RNAs
data in orange. Each ncRNA will be associated to a vector in the vector spaces and
will be attributed a label according to its ontology. From either ncRNAs sequences
(Kmer) or both ncRNA and mRNAs sequences (IntaRNA, RNAup), a set of scores
will be computed and used as features. Machine learning is finally used to produce the
results we are presenting from those vector spaces.
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Our utilization of machine learning in this project is challenging for two
different reasons that justify all the following methodology choices:

1. The ratios |vectors|/|features| of our datasets are problematic: 97 vec-
tors for 6663 dimensions for the vector spaces built from the interactomes.
Those ratios are due to both cellular biology, since the number of mRNAs
in a genome is always greater by several folds to the number of ncRNAs,
and the limited availability of annotated ncRNAs sequences thus limiting as
well the number of vectors. Those two issues are beyond our control and, to
our knowledge, there is no way for us to significantly improve those ratios
for Saccharomyces Cerevisae without considerable drawbacks. Moreover Sac-
charomyces Cerevisae already has the greater number of annotated ncRNAs
amongst similar organisms.
2. Our goal is neither to train a good classifier nor to classify unlabelled
RNAs but to estimate how well the labels can be predicted from the different
features. We are working under the reasonable assumption that a loss in
performance between two sets of features implies that the lesser performing
set is less specific. If the two sets of features are related, like ours are, it would
imply a levelling mechanism.

Leave-one-out Cross-validation (LOOCV). Cross-validation refers in
machine learning to partitioning the data set into different sets to separate
the data used to train the classifier and the ones used to test it. The goal of
cross-validation is to ensure the credibility of the results produced.

We use a leave-one-out cross-validation technique (LOOCV) for validation.
For every vector vi in our set V of vectors we train a classifier on the set (V −vi)
and test the resulting classifier on the vector vi. The final accuracy is computed
as the average of the accuracies for all vectors. This technique fits our data
set and its limited number of vectors. A more classical approach such as train-
validation-test would have required us to use very small sets.

Importantly, we are also performing a second nested level of LOOCV to
avoid any bias during the parametrization of the classifiers. This second level is
described in Sect. 3.3 and illustrated in Algorithm 1.

Principal Component Analysis (PCA). Since the ratio |vectors|/|features|
is poor in the dataset, it may hinder the accuracy of the classifiers. Principal
component analysis (PCA) is a standard method to improve this ratio by reduc-
ing the number of dimensions. The PCA uses an orthogonal transformation to
build a set of uncorrelated features (components) from the initial features with
the objective of maximizing variance (i.e. minimizing the information lost by
transforming).
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Algorithm 1: 2-level procedure(Df, l nc)
Data: Given dataframe D (i.e.. the vector space) and l nc, the list of numbers

of components to consider for the PCA
Result: Returns d accuracy, dictionary of (vector, accuracy)
dict d accuracy = ∅;
for vector vi ∈ D do

test set = {vi}
train set = D − {vi}
best nc = −1
accuracy best nc = −1
for nc ∈ l nc do

D′ = D − {vi}
D′ = PCA(D′, nc)
for vector vj ∈ D′ do

sub test set = {vj}
sub train set = D′ − {vj}
classifier = new RFT classifier()
classifier.train(sub train set)
tmp accuracy = classifier.test(sub test set)
if tmp accuracy > accuracy best nc then

best nc = nc
accuracy best nc = tmp accuracy

D = PCA(D, best nc)
classifier = new RFT classifier()
classifier.train(train set)
d accuracy[vi] = classifier.test(test set)

return d accuracy;

The number of components to transform to is an important parameter that
may influence the classifier accuracy. Performing preliminary tests to determine
the best number would lead to a serious risk of overfitting. As a consequence we
dynamically determined this number for each vector. The procedure is described
in Algorithm 1. From the first LOOCV, the set of vectors V has been split into
a set of pairs of a training set V ′ = (V −{vi}) and a test set {vi}. For each pair,
a second LOOCV is performed on V ′ leading to another set of pairs of a training
set V ′′ = (V ′ − {vj}) = (V − {vi, vj}) and a test set {vj}. Potential values for
the number of components are tested and the one producing the best accuracy
over V ′ is selected and used on V to predict the label of vi. As a consequence,
the number of components to transform to is always selected independently from
the test set.

Ideally, the set of potential values for the number of components would be
1, 2, . . . , |V |. However the computation time grows linearly with the number of
values tested. As a consequence we decided to use a subset of 1, 2, . . . , |V | instead.
Preliminary tests shows a light peak of performances at 8–10 components with
a slight decrease before and after. As a consequence we tried all values from
1, 2, . . . , 20. We also added 0 (i.e. not performing a PCA).
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Random Forest (RF) Classifier. We chose to use ensemble learning and more
specifically Random Forest (RF) classifiers over other methods and classifiers
because of some anticipated properties of the datasets. Indeed, the limitations
of prediction tools are likely to generate noise which RF are relatively resilient
to [21, p.596]. Moreover, the interactions we aimed at capturing were likely to
be complex and the size of the training set to be limited. Since RF can capture
complex interactions and are simple to train [21, p. 587] compared to other
classifiers [21, p. 587] they appeared to be a fitting candidate.

Our implementation uses the python package Scikit-learn [22].
As the name suggests, Random Forest classifiers involve randomness. As a

consequence we repeated the procedure and display distributions in order to
counterbalance the variation of the predictions. Preliminary results show that
the average accuracies of those distributions converge (10−4) within the first 500
runs. However we decided to double this value to add a comfortable security
margin.

Dummy Classifier. A second classifier is trained in parallel to serve as a
control. As the name “dummy” suggests, it is not an actual classifier but an
heuristic randomly generating labels for the test set according to the probabilities
distribution it extracted from the training set. As the dummy classifier is always
trained and tested on the same sets as its RFT counterparts, it appears to be
a suitable solution to produce a sound control while using LOOCV and using
unbalanced labels. However, as all dummy classifiers produced extremely close
performances, we decided to display only one of the dummy classifiers in each
display instead of one per other classifier for the sake of clarity. Please note that
the dummy classifier is unaffected by PCA as it does not consider the features.

Performance Metric for a Multi-label Dataset. The number of labels in
our data sets prevents straightforward use of some classical displays such as
ROC curves. A single prediction can indeed be, for instance and at the same
time, both a false positive for a given label and a true negative for another.
As a consequence we have TPR + FPR + TNR + FNR ≥ 1 ([True, False]
[Positive, Negative] Rate) and plotting one ROC curve for each label offers little
readability. As a consequence we instead chose to use displays based on accuracy
(Accuracy = Precision = |True Predictions|/|Predictions|).

3.4 Main Experiments

As described in Sects. 3.2 and 3.1, our work associates each ncRNA with three
vectors of features ({Kmer,intaRNA,RNAup}) and a label. By doing so we pro-
duced three vector spaces which are suitable for machine learning. We consider
that the ability of the classifiers to predict those labels reflects the said specificity.
Therefore, the goal of the machine learning procedure described in Sect. 3.3 is
to assess the specificity of the sets of features regarding the labels.
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Fig. 2. Distribution of accuracies of 1000 classifiers following specifications of Sect. 3.3.
Each row corresponds to either a set of features ({Kmer,RNAup,intaRNA}, cf.
Sect. 3.2) or the control (cf. Sect. 3.3) associated with a number of labels ({2, 5}, cf.
Sect. 3.1). Means and standard deviations for all distributions are displayed in Table 2.
(Color figure online)

Table 2. Means (μ) and standard deviations (σ) for all distributions displayed in Fig. 2

2 labels 5 labels
μ σ μ σ

Control 0.517 0.057 0.316 0.044
Kmer 0.863 0.031 0.724 0.03
RNAup 0.794 0.032 0.699 0.03
intaRNA 0.675 0.04 0.555 0.037

Figure 2 displays the distribution of the accuracies of the classifiers for all
three kinds of features with two or five labels. The combination of LOOCV
(cf. Sect. 3.3) and the inherent randomness of RF classifiers (cf. Sect. 3.3) lead
us to produce and display distributions of accuracies instead of a single value.
Exact means (μ) and standard deviations (σ) values for all those distributions
are displayed aside in Table 2. The best accuracies are obtained from the Kmer
similarity scores with 86.3% of correct prediction with two labels and a standard
variation of only 0.31%. Results obtained from scores predicted by RNAup are
less accurate but are still very distinct from the control with no overlapping.
However, results obtained from scores predicted by IntaRNA are significantly
less accurate to the point that the distribution overlaps with the control. Results
obtained with five labels display a similar hierarchy between Kmer, RNAup and
IntaRNA with the addition of an expected global loss of accuracy. Indeed, the
increased number of labels to predict makes the problem harder as shows the
important drop of accuracy of the control. However, Kmer, RNAup and IntaRNA
appear to all be more resilient than the control to this change.
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This first display suggests that the interaction profiles predicted by IntaRNA
are significantly less specific than the ones predicted by RNAup. The interaction
profiles predicted by RNAup also appear to be the closest to the ones produced
from Kmer similarity scores and thus seem to give the most accurate account of
the specificities of the sequences. This observation together with the difference
between the two prediction tools described in Sect. 3.2 suggest that probable
interactions (i.e. the ones predicted by IntaRNA) are more inhibited than the
potential optimal ones (i.e. the ones predicted by RNAup). This first observa-
tion is coherent with the influence of an evolutionary pressure as the inhibition of
probable interactions would have a greater impact than the inhibition of poten-
tial optimal ones which are less likely to form.

Figure 3 is a different presentation of the results displayed in Fig. 2. Raw
results from the classifiers are unitary predictions (i.e. predictions of the label of
one vector). We gathered those unitary predictions for each vector, thus produc-
ing an averaged accuracy for each of them. Figure 3 aims at highlithing variations
inside the distribution displayed in Fig. 2. Please note that each column corre-
sponds now to a different set of features while the upper row displays the results
with two labels and the lower row displays the results with five labels. Each line
corresponds to a ncRNA, the length reflecting the accuracy of predictions made
for this ncRNA label while the colour corresponds to its label. Please also note
that lines are sorted by accuracies. As a consequence, the order varies in all of
those six subgraphs.

The drop of accuracy observed in Fig. 2 between Kmer similarity scores,
RNAup predicted scores and IntaRNA scores is also visible in Fig. 3 as a more
concave slope for better performing sets of features. However Fig. 3 also displays
variations of accuracies from one label to the other. C/D box RNAs (red) are the
most noticeable group as those RNAs are, on average, extremely well-predicted
with all features and either two and five labels. H/ACA box RNAs (blue), on the
other hand, seem to be harder to predict from Kmer similarity scores or RNAup
predicted scores than C/D box RNAs but show a dramatic drop of accuracy in
predictions made from IntaRNA predicted scores. Predictions accuracies of the
three remaining labels vary from a set of features to the other and even inside
a label for a given set of features. We have been unable so far to determine
if this was only due to a lesser number of vectors for those labels or to other
parameters.

Results displayed in Fig. 3 complement our previous observations as the
{Kmer,RNAup,IntaRNA} hierarchy is still clearly observable. However, Fig. 3
displays a phenomenon invisible in Fig. 2: the variance in predictions accuracy
between the label, especially regarding C/D box RNAs and H/ACA box RNAs.
Indeed, predictions for C/D box RNAs (red) are always the most accurate while
predictions for H/ACA box RNAs (blue) clearly fall behind. This variance goes
from a limited difference (most predictions for H/ACA box RNAs are still above
80% accuracy in predictions from Kmer similarity scores with two labels, cf. top
left graph) to a dramatic drop (predictions from IntaRNA predicted scores with
two labels, cf. top right graph). Predictions accuracies of the three remaining
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Fig. 3. Average accuracies of classifiers for each vector (i.e. ncRNA) over 1000 tests.
Each column corresponds to a set of features ({Kmer,RNAup,intaRNA}, cf. Sect. 3.2).
The first row displays the results with five labels and the second with two labels
(cf. Sect. 3.1). Each colored line in those 6 displays corresponds to a [vector/ncRNA].
The length of the line represents the averaged accuracy of the 1000 classifiers for the
corresponding [vector/ncRNA]. The colour of the line corresponds to the label of the
associated [vector/ncRNA]. Please note that [vectors/ncRNAs] are sorted according
to the accuracy associated to them. As a consequence the order is different in all six
graphs. (Color figure online)

labels vary from a set of features to the other and even inside a label for a
given set of features. We have been unable so far to determine if this was only
due to a lesser number of vectors for those labels or to other parameters. How-
ever, the predictions of the three remaining labels display accuracies similar
to the ones of predictions for H/ACA box RNAs. Since the dataset contains
more H/ACA box RNAs than the three other labels put together, this similarity
stresses that H/ACA box RNAs are way harder to predict than C/D box RNAs.
Further discussions of this difference of performances between labels require to
first introduce Fig. 4.

In order to investigate the drop in accuracy between predictions made from
scores predicted by RNAup and IntaRNA we plotted distributions of scores as
box plots for each tool (left and middle) and for each ncRNA labels (colours). We
also plotted the distributions of the lengths of ncRNAs sequences (right, please
note that the influence of length results is discussed in Sect. 3.5). The results are
displayed in Fig. 4. The colour code is the same as in Figs. 2 and 3. Figure 4 shows
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Fig. 4. Normalized distributions of scores predicted by IntaRNA (left), scores predicted
by RNAup (middle) and lengths of sequences (right) for each ncRNA label. Scores are
in kcal/mol. Please note that scores from both IntaRNA and RNAup approximate a
difference of entropy (Δg) and are therefore negative. A lower score thus suggests that
the interaction is stronger. (Color figure online)

that RNAup is not only outputting stronger scores (entropy scores are negative
cf. Sect. 3.1) but also preserves distinctions between the labels, especially between
C/D box RNAs and H/ACA RNAs scores. This observation is coherent with the
better performances of classifiers learning from the interactome predicted with
RNAup. However the important drop in accuracies displayed in Fig. 3 on scores
predicted with IntaRNA with two labels shows that RF classifiers are able to
capture variations (cf. Figs. 2 and 3) that the extremely similar distributions
of those two labels in Fig. 4 fail to display. This observation suggests that the
global inhibition that is shown by the drop in the averages of both RNAup and
IntaRNA scores is also a levelling phenomenon rather than a “linear” inhibition.

3.5 Additional Experiments

Impact of Boxes on Predictions. Among the five labels we are consider-
ing, two correspond to ncRNA classes defined by the presence of “boxes” in
the sequence: C/D box snoRNAs and H/ACA box snoRNA. Those boxes are
small and their consensus sequences are flexible (C: RUGAUGA, D: CUGA,
H: ANANNA, ACA: ACA). Yet they might bias our results, especially those
obtained from Kmer composition. To investigate this matter, we performed a
brute force feature selection algorithm specific to random forest classifiers: the
Boruta algorithm. This algorithm tests each feature, estimates its contribution
to the classification and produces the list of features considered to be crucial
for a given threshold of confidence (i.e. p-value, default = 0.05). Results show
that only 50% or less of the critical features are compatible with a consensus
sequence, even in the 2-label dataset (restrained to C/D box and H/ACA boxes
snoRNAs only). This result is an upper bound since boxes are located while
Kmer distributions ignore positions. As a consequence, the results displayed in
Figs. 2 and 3 cannot be produced only from Kmers capturing boxes.
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Impact of Sequence Lengths on RNA-RNA Interaction Predictions.
The third panel of Fig. 4 displays the distributions of lengths of ncRNAs for
all labels, each label being represented by a boxplot in its usual colour. Length
distributions vary from a label to another with two visible groups of labels: C/D
box, H/ACA box and spliceosomal labels (resp. red, blue and yellow) distribu-
tions are tightened around a relatively short length while miscellaneous and
unknown labels (resp. black and green) present a wider distribution with overall
longer sequences. The problem planted by lengths of mRNAs targets has been
explored by Umu et al. [19,20]. Their results show that the accuracy of prediction
tools typically drops as the length of the target increases above 300 nb. However,
amongst the prediction tools tested, IntaRNA displays very little to no loss as
the length of the target increases. On the contrary RNAup performances are sig-
nificantly reduced. Cutting down the targets into subsequences of manageable
length is not suited for this study as we need one score per {ncRNA,mRNA}
pair. Moreover, we would like to propose to interpret this drop not only as a
flaw of RNAup but as an illustration of the difference we described in Sect. 3.2.
Yet the predictions scores for miscellaneous and unknown labels (resp. black and
green) are to be treated with caution.

A second problem to consider is that the features we used are not independent
of sequence lengths. Indeed, a longer sequence will contain more Kmers and Fig. 4
suggests a partial correlation between scores and length. In order to investigate
this issue we repeated the ensemble learning procedure with the length as the
only feature. Results show that predictions using length are accurate (μ = 0.856
and σ = 0.012 with the 2-label dataset, μ= 0.651 and σ = 0.013 with the 5-label
dataset) but are slightly outperformed by the ones trained on RNAup scores
over the 5-label dataset and over both datasets by the ones trained on Kmer
composition. Those results suggest that sequence lengths are specific to each
labels but are not the only variation captured by the classifiers.

Overlapping of Predicted Interaction Zones with Observed Interaction
Zones. We scanned the sequences of C/D box snoRNAs in the dataset looking
for the consensus sequences. We excluded C/D box snoRNAs with ambiguous
sites (i.e. more than one match with the consensus sequences of either box in
the corresponding potential areas). We then looked for any intersection between
the area interacting with rRNAs in observations (i.e. 3-rd to 11-th nucleotides
upstream from D box) and the interaction zones predicted by RNAup. Amongst
the interaction zones involving the 35 selected C/D box snoRNAs candidates,
none overlapped with the observed interaction zones.

4 Conclusion

Our results enabled us to identify the signature of an evolutionary pressure
against random interactions between ncRNAs and mRNAs in Saccharomyces
Cerevisae. Presumably, as previously observed in prokaryotes and archaea, this
phenomenon aims to increase the translation efficiency [10].
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Although our data set includes various types of ncRNAs, the vast major-
ity of them are snoRNAs. Our conclusions are therefore primarily applicable to
snoRNAs, even if our data do not exclude that it could be generalized to other
ncRNAs. Interestingly, the (old) age of the snoRNA family suggests that it could
be the trace of a fundamental biological process used by primitive microorgan-
isms. The absence (to our knowledge) of experimental evidences of snoRNA-
mRNA interactions in unicellular eukaryotes tends to support our conclusions.
By contrast, the existence of known interactions between orphan snoRNAs and
mRNAs in human or mice [4,5] opens a legitimate debate about the necessity
and specificity of such mechanisms in animals.
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Belin, Paris (2004)

17. Busch, A., Richter, A.S., Backofen, R.: IntaRNA: efficient prediction of bacterial
sRNA targets incorporating target site accessibility and seed regions. Bioinformat-
ics 24(24), 2849–2856 (2008). https://doi.org/10.1093/bioinformatics/btn544

18. Tafer, H., Kehr, S., Hertel, J., Hofacker, I.L., Stadler, P.F.: RNAsnoop: efficient
target prediction for H/ACA snoRNAs. Bioinformatics 26(5), 610–616 (2010).
https://doi.org/10.1093/bioinformatics/btp680

19. Lai, D., Meyer, I.M.: A comprehensive comparison of general RNA-RNA interac-
tion prediction methods. Nucleic Acids Res. 44(7), e61 (2016)

20. Umu, S.U., Gardner, P.P.: A comprehensive benchmark of RNA-RNA interaction
prediction tools for all domains of life. Bioinformatics 33(7), 988–996 (2017)

21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd
edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

22. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

https://doi.org/10.1016/j.molcel.2011.08.022
https://doi.org/10.1016/j.molcel.2011.08.022
http://www.sciencedirect.com/science/article/pii/S1097276511006435
http://www.sciencedirect.com/science/article/pii/S1097276511006435
https://doi.org/10.1093/nar/gkh091
https://doi.org/10.1093/nar/gkh091
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC308825/
https://doi.org/10.1093/nar/gku359
https://doi.org/10.1093/bioinformatics/btn544
https://doi.org/10.1093/bioinformatics/btp680
https://doi.org/10.1007/978-0-387-84858-7


Context-Specific Nested Effects Models

Yuriy Sverchkov1(B) , Yi-Hsuan Ho2 , Audrey Gasch2 ,
and Mark Craven1

1 Department of Biostatistics and Medical Informatics,
University of Wisconsin–Madison, Madison, WI, USA

yuriy.sverchkov@wisc.edu
2 Department of Genetics, University of Wisconsin–Madison, Madison, WI, USA

Abstract. Advances in systems biology have made clear the importance
of network models for capturing knowledge about complex relationships
in gene regulation, metabolism, and cellular signaling. A common app-
roach to uncovering biological networks involves performing perturba-
tions on elements of the network, such as gene knockdown experiments,
and measuring how the perturbation affects some reporter of the process
under study. In this paper, we develop context-specific nested effects
models (CSNEMs), an approach to inferring such networks that gener-
alizes nested effect models (NEMs). The main contribution of this work
is that CSNEMs explicitly model the participation of a gene in multiple
contexts, meaning that a gene can appear in multiple places in the net-
work. Biologically, the representation of regulators in multiple contexts
may indicate that these regulators have distinct roles in different cellu-
lar compartments or cell cycle phases. We present an evaluation of the
method on simulated data as well as on data from a study of the sodium
chloride stress response in Saccharomyces cerevisiae.

1 Introduction

Cellular processes such as gene regulation, metabolism, and signaling form com-
plex interplay of molecular interactions. A primary means of uncovering the
details of these processes is through the analysis of measured responses of cells
to perturbation experiments. We present Context-Specific Nested Effect Models
(CSNEMs), which are graphical models for analyzing screens of high-dimensional
phenotypes from gene perturbations. In this setting, the perturbation consists of
knocking out, knocking down, or otherwise disabling the activity of a gene, via
the use of deletion mutants, RNA interference, CRISPR/Cas9, or other tech-
niques. The high-dimensional phenotype may be a transcriptomic, proteomic,
metabolomic or similar multidimensional profile of measurements. Such profiles
provide indirect information about the pathways that connect the gene that is
perturbed in an experiment to the effects observed in a phenotype. This poses a
challenge for determining functional relationships, since the precise mechanisms
by which the perturbation relates to the phenotype must be inferred using com-
putational and statistical methods, expert knowledge, or a combination of both.
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Related work on inferring networks from gene expression data includes meth-
ods based on statistical dependencies between expression measurements [4,7],
which are used to construct networks of probable interactions between the genes
measured in the expression profile. Other work on using phenotypic data uses
clustering of phenotypic profiles, or the similarity between profiles, to construct
networks among the perturbation genes [17,19]. The rationale behind these
approaches is that genes that produce similar phenotypes when perturbed are
likely to be functionally related [13].

The CSNEM approach is a generalization of the Nested Effect Model (NEM)
[11]. In the NEM approach, a network structure among the perturbed elements
of the cell is inferred from the nested structure of phenotypic profiles. The gen-
eral idea is that perturbation of a gene that is further upstream in a signaling
pathway would affect more elements than perturbation of a gene further down-
stream. For example, Fig. 1(a) shows an NEM in which Hog1 is upstream of
Cka2. The table underneath the graph represents the differential expressions of
the high-dimensional phenotypes observed in the screen, with rows correspond-
ing to single-gene knockouts and each column corresponding to an effect : one
dimension of a phenotype, such as a particular transcript in a transcriptomic
phenotype. In the table of effect measurements in the figure, a ‘1’ indicates that
a perturbation changed the response of the effect, and a ‘0’ indicates that it
did not. The deletion of Hog1 would affect e1, e2, e3 and e4 because they are all
downstream of it. The deletion of Cka2, on the other hand, would only affect e3
and e4. Therefore, the nesting of the effects of the deletion of Cka2 within the
effects of the deletion of Hog1 places the former downstream of the latter.

Hog1

Cka2

e1 e2 e3 e4

Hog1 1 1 1 1

Cka2 0 0 1 1

(a) Hog1

Cka2

Cka2

e1 e2 e3 e4 e5 e6

Hog1 1 1 1 1 0 0

Cka2 0 0 1 1 1 1

(b)

Fig. 1. (a) An example of effect nesting in an NEM, and (b) a partial intersection
of effects as captured by a CSNEM. The table underneath each graph represents the
differential expressions of the high-dimensional phenotypes observed in the screen, with
rows corresponding to single-gene knockouts and each column corresponding to an
effect, one dimension of a phenotype, where a ‘1’ indicates that a perturbation changed
the response of the effect, and a ‘0’ indicates that it did not.

Such nesting of effects, however, does not always occur. The protein product
of a gene may interact with those of other genes in a multitude of ways, and
one might imagine a situation where two genes are interacting with each other
upstream of a subset of the effects, but additionally have other roles indepen-
dently of each other. This is the case in Fig. 1(b), where, upstream of effects
e1, e2, e3 and e4 Cka2 and Hog1 interact as before, but Cka2 additionally affects
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e5 and e6 independently of Hog1. In such a case, we see that the phenotype
induced by the perturbations of each gene includes effects downstream of the
common pathway, but each perturbation also shows unique effects, and rather
than being nested, the effects show a partial intersection. The example in Fig. 1
is based on a pattern we identified in our application of CSNEM learning to
experiments studying sodium chloride (NaCl) stress response in Saccharomyces
cerevisiae.

In the CSNEM approach, we address this issue by explicitly considering the
possibility that one gene may have multiple contexts of interaction. The model
can be equivalently viewed either as a single graph model where multiple nodes
may represent multiple roles of the same gene, or as a mixture of multiple NEMs,
where each NEM describes a different subset of the effects. Notably, mixtures
of NEMs have been used for analyzing single-cell expression data [22]. In that
work, the mixture is used to account for variation of gene activation states across
different cells. In contrast, in a CSNEM, the mixture represents different pat-
terns of interaction among the same sets of genes across different subsets of the
measured effects. The effect pattern in Fig. 1(b) can alternatively be accounted
for by the introduction of a hidden node downstream of both Hog1 and Cka2,
an approach explored by Sadeh et al. [21], where they introduce a statistical test
to infer a partially resolved nested effect model. In fact, Sadeh et al. show that
the presence of a hidden node downstream of a pair of genes is consistent with
every possible configuration of effect responses. Their method aims to character-
ize all possible NEM models that are consistent with the data, and as a result it
never rejects the possibility of a hidden node existing downstream of any pair of
genes. In contrast, in our approach we aim to find a single parsimonious network
model that optimally fits the data. We show how to cast the problem of learning
a CSNEM as a modified version of NEM learning, evaluate the ability of this
approach to recover a ground-truth network on simulated data, and present an
application to the salt stress pathway in yeast.

2 Background: Nested Effects Models

Tresch and Markowetz [25] formulate nested effects models (NEMs) as a special
case of effects models. In an effects model, there is a set of actions A, and a
set of effects E , and we wish to model which effects change in response to each
action. In earlier work on nested effects models [11], the actions and effects are
respectively referred to as S-genes (S for signaling) and E-genes (E for effects).
The actions correspond to perturbation experiments, while the effects correspond
to the high-dimensional phenotype measured in the experiment. A general effects
model can be represented by a binary matrix F where Fae = 1 if action a leads
to a response (or change) in effect e, and 0 otherwise.

Let nA and nE represent the number of actions and effects, respectively. An
NEM is made up of a directed graph G the nodes of which are the actions A,
and an nA × nE binary matrix Θ of attachments, in which Θae = 1 if effect e is
attached to action a, and 0 otherwise. A modeling constraint is that each effect
is attached to at most one action.
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The NEM is interpreted as follows: action a causes a response in effect e if
and only if either e is attached directly to a, or there is a directed path in G from
a to the action to which e is attached. Mathematically, this can be formulated in
terms of matrix multiplication. Since what matters is which actions are reachable
from other actions in G, we can work with Γ , the nA × nA accessibility matrix
of G. Γab is 1 if there is a directed path from a to b in G, and 0 otherwise. As
a matter of convention and for mathematical convenience, the diagonal entries,
Γaa are all 1s. Using Γ , we can express the effects matrix F of an NEM as
F = ΓΘ.

2.1 Likelihood Computation

The problem of inferring an NEM from a data set D can be viewed as that of
maximizing a likelihood. In this section we review how the likelihood of an NEM
is framed to illustrate how the likelihood of a CSNEM relates to it.

Supposing that we have some data consisting of measurements of the observ-
able effects subject to each action included in the model, and assuming data
independence, for a general effects model, the log-likelihood of the model is

log L(F ) = logP(D|F ) =
∑

(a,e)∈A×E
logP(Dae|Fae). (1)

Where P(Dae|Fae) is the probability of the data we observed in regard to effect
e subject to action a given that Fae indicates whether we expect a response in
e subject to a. When the observed phenotype is, for example, gene expression
data, a typical indicator of a response in effect e is differential expression of
effect e between the experimental condition a and a control, such as a wild-type
phenotype.

Let R ∈ R
nE×nA be a matrix of log-likelihood ratios such that Rea =

P(Dae|Fae=1)
P(Dae|Fae=0) , and let N represent the null model predicting no effect response to
any action, Tresch and Markowetz [25] show that the log-likelihood of an effects
model F is then

log L(F ) = tr(FR) + log L(N)︸ ︷︷ ︸
constant w.r.t. data

(2)

where tr(·) is the trace of a matrix. The above holds for any effects model in
general. Since in an NEM, F = ΓΘ, to maximize the likelihood of an NEM one
would maximize tr(ΓΘR).

Computationally, maximizing this expression is difficult because it is a search
over a discrete but exponentially large space of all possible Γ and Θ matrices.
Early work on NEMs reduces some of the complexity of this search by observing
that since Θ can only have one 1 for each effect across all actions by construction,
and since tr(ΓΘR) = tr(RΓΘ), one can marginalize over all possible values of
Θ, assuming that they are equally likely a-priori, yielding a marginal likelihood
proportional to

∏
e∈E

∑
a∈A exp((RΓ )ea). This reduces the task to the search

for a Γ that maximizes this marginal likelihood, an exhaustive search for which
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is feasible for nA ≤ 5 [11]. For larger graphs, however, the problem is still
computationally restrictive, and multiple algorithms for learning nested effects
model structure efficiently have been presented in the literature [6,12], most
of which have been implemented in the nem R package [5]. Other approaches
to computing the likelihood have also been explored, such as the factor graph
optimization approach by [26].

In this work, we show how learning a CSNEM can be cast as a more com-
plex NEM learning problem. To solve the NEM learning problem, we use MC-
EMiNEM, a method that does not attempt to optimize a marginal likelihood,
as many of the above approaches do, but maximizes the log posterior

logP(Γ,Θ|D) = log L(ΓΘ) +
∑

(a,b)∈A×A
logP(Γa,b) + logP(Θ). (3)

Where logP(Γi,i) is an edge-wise prior on the structure of the actions graph and
P(Θ) is a prior on the attachment matrix. MC-EMiNEM uses Monte Carlo (MC)
sampling and Expectation Maximization (EM) within MC steps to search for
the Γ and Θ that are optimal with respect to this posterior [16]. MC-EMiNEM
is available as a part of the nem R package.

3 Methods: Context-Specific Nested Effects Models

As briefly mentioned in the introduction, the motivation for developing CSNEMs
is that there are cases in which phenotype effects are not nested, as in the example
in Fig. 1. In CSNEMs, we account for situations like the partial overlap in Fig. 1
by allowing an action in the graph to be represented by more than one node,
and we call these different nodes that correspond to the same action different
contexts of the action. Mathematically, this enables the model to represent rela-
tionships that are not representable by an NEM. Biologically, different contexts
in a CSNEM may correspond to participation in different pathways, either due
to physical separation such as localization of molecules, or temporal separation,
such as participation in different stages of the cell cycle.

The CSNEM in Fig. 1(b) is presented as a single NEM-like graph with multi-
ple contexts for the Cka2 node. Note that the same diagram can also be viewed
as a pair of NEMs: one containing Hog1 and Cka2, which applies to effects
e1, e2, e3, e4, and another containing only Cka2, which applies to the effects e5
and e6. This view of a CSNEM as a mixture of NEMs is most useful in under-
standing our approach to learning a CSNEM from data.

3.1 The Likelihood of a k-CSNEM

We define a k-CSNEM as a mixture of k NEM’s, where the response of each effect
e is governed by one of k NEMs, each of which can have a different graph G
relating the actions A. A k-CSNEM is therefore parameterized by k accessibility
matrices Γ 1, . . . , Γ k, each of which is nA ×nA and by a vector θ, each coordinate
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of which takes one of knA + 1 values, specifying attachment to one of the nA
actions in one of the k NEMs, or the absence of attachment.

The parameter θ partitions the space of effects by assigning each effect to
one of the k NEMs (or to none of them). As a matter of convention, we represent
attachment of effect e ∈ E to an action a ∈ A in mixture member i ∈ {1, . . . , k}
by θe = (i − 1)nA + a (we slightly abuse notation, treating actions as natural
numbers 1, . . . , nA here), and let θe = 0 if the effect is not attached to any action
in any NEM. We can then define the partition of E into k sets E1, . . . , Ek as

Ei = {e ∈ E|∃a ∈ A : θe = (i − 1)|A| + a} for i ∈ {1, . . . , k}. (4)

Let us define a mapping of effect indices, which will be useful later: ζ :
{1, . . . , k} × {1, . . . , |Ei|} → E . Thus, ζ(i, j) = e when effect e is the jth member
of partition Ei. Given this partition, the likelihood of a CSNEM is defined as the
product of the NEM likelihoods per partition:

L(Γ 1,...,k, θ) =
k∏

i=1

L(Γ i, Θi) (5)

where Θi is a matrix in {0, 1}|A|×|Ei| and Θi
aj = 1 iff θζ(i,j) = (i − 1) + a, and 0

otherwise.
In relation to the CSNEM, let us combine the mixture of NEMs into one

structure by defining the block diagonal matrix Γ made of blocks Γ i, define
Θ ∈ 0, 1|A|k×|E| by Θae = 1 iff θe = a, and let be a block matrix made up of k
appended |A| × |A| identity matrices:

Γ =

⎡

⎢⎢⎢⎢⎣

Γ 1 0 · · · 0

0 Γ 2
...

...
. . . 0

0 · · · 0 Γ k

⎤

⎥⎥⎥⎥⎦
, Ψ =

[
I|A| I|A| · · · I|A|

]
︸ ︷︷ ︸

k copies

. (6)

Let Ri be a matrix in R
|Ei|×|A| where Ri

ja = Rζ(i,j),a (i.e., Ri is a selection
of effects from R based on the partition Ei). Given these definitions the log-
likelihood of the CSNEM can be written as1

log
k∏

i=1

L(Γ i, Θi) = tr(ΓΘ(RΨ)) + log L(N). (7)

Thus, the likelihood of a k-CSNEM is equal to the likelihood of an NEM with
k|A| actions for the data matrix RΨ , subject to the constraint that Γ is block
diagonal as in (6). We can consequently use any NEM learner to learn a k-
CSNEM mixture, as long as it supports constraining Γ to be block-diagonal.
1 For a detailed derivation see https://github.com/sverchkov/mc-em-cs-nem/blob/

master/recomb-2018-supplement/recomb-2018-supplement.pdf, commit 98b01f1
9357e3d58eae81764d42a6903624e3433 at the time of submission.

https://github.com/sverchkov/mc-em-cs-nem/blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf
https://github.com/sverchkov/mc-em-cs-nem/blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf
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Analogously to (3), we can obtain a posterior probability for the CSNEM by
introducing priors for Γ and Θ, and applying MC-EMiNEM to maximize that
posterior. The block-diagonal constraint can be enforced using the edge-wise
prior on the structure of Γ , by setting the priors on edges that would violate
block-diagonality to zero.

3.2 Compact Visualization and Identifiability of a k-CSNEM

Having obtained k NEMs and the corresponding partitioning of the effect set, a
single graph can be composed by merging all action nodes across the graphs that
have the same ancestors (are reachable from the same set of actions). Figure 2
provides an example: Fig. 2(a) shows three graphs that describe the structures of
three NEMs that compose a mixture, and Fig. 2(b) shows the result of merging
them. Note that Hog1 is reachable from no nodes but itself in all three NEMs.
Consequently, in the compact CSNEM, there is only one version of Hog1. In
contrast, Cka2 is reachable from Hog1 in one of the NEMs, and is only reachable
from itself in the others, which is why it has two contexts in the CSNEM. Sim-
ilarly, Ckb14 is reachable from both Hog1 and Cka2 in one of the three NEMs,
but not the others, and has two contexts as well. To keep track of the various
contexts, we append the list of genes from which a context is reachable when
displaying the graph, e.g. the context of Cka2 that is reachable from Hog1 is
labeled ‘Cka2 [Hog1],’ while the context that is not reachable from other nodes
is labeled simply ‘Cka2.’ This is particularly helpful when viewing graphs with
many nodes and many contexts.

Hog1

Cka2

Ckb12

Hog1

Cka2

Ckb12

Hog1

Cka2

Ckb12

(a) Hog1 Cka2

Cka2 [Hog1] Ckb12

Ckb12 [Hog1 Cka2]

(b)

Fig. 2. Building a CSNEM from a mixture of NEMs. (a) Three NEMs that compose a
mixture. (b) A single graph obtained by an edge-preserving merge of the three NEMs.

The merged graph in Fig. 2(b) preserves the edges that were present in the
mixture of NEMs, but it is not necessarily a unique maximizer of the likeli-
hood, rather, it is a member of an equivalence class of equally likely CSNEMs.
What characterizes the equivalence class is the set of inclusive ancestries of the
nodes in the CSNEM. The inclusive ancestry of a node is a set of actions; this
sat contains the action at the node and all actions from which it is reachable:
e.g. the inclusive ancestry of the Cka2 node in the leftmost NEM in Fig. 2(a) is
{Hog1,Cka2}, while the inclusive ancestry of the Cka2 node in the middle NEM
is simply {Cka2}. The set of inclusive ancestries for the example in Fig. 2 is
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therefore {{Hog1}, {Cka2}, {Ckb12}, {Hog1,Cka2}, {Hog1,Cka2,Ckb12}}. Any
two CSNEMs with identical sets of inclusive ancestries necessarily have the same
set of unique accessibility matrix columns Γ i

·a : i ∈ {1, . . . , k}, a ∈ A, and conse-
quently, have the same likelihood for likelihood-maximizing attachments Θ. The
characterization of equivalence classes in terms of inclusive ancestry sets relates
to previous results about NEM identifiability: for transitively closed Γ , cycles
form fully connected components that can be merged into single nodes [12].
All nodes in such connected components have identical ancestry sets, yielding a
one-to-one mapping from the NEM’s nodes to the ancestry sets, where the edges
in the transitive closure of the NEM correspond to the set inclusion relations
between ancestry sets. This can also be extended to the case of non-transitive
Γ and the result on identifiability of non-transitive NEMs up to cycle reversals
[25], the full discussion of which we omit here for brevity. Note that while set of
ancestries characterizes the likelihood equivalence class, the posterior maximized
by MC-EMiNEM would be, for example, higher for CSNEMs with fewer edges
in Γ under a sparsifying edge prior.

4 Results

We have introduced the CSNEM model and showed how the CSNEM likelihood
can be viewed as the likelihood of an NEM with knA actions learned from a
modified differential expression log-likelihood ratio matrix RΦ. Below, we use
this transformation in conjunction with an existing NEM learning approach,
MC-EMiNEM to learn CSNEMs and evaluate the ability of this approach to
recover a CSNEM from data that is generated by a known multiple-context
model in simulation. Finally, we present the results of learning a CSNEM from
the results of knockout experiments on S. cerevisiae cells under NaCl stress, and
discuss the biological significance of some patterns of context-specificity that are
identified in the CSNEM.

4.1 Evaluation on Simulated Data

We performed simulations to evaluate our ability to infer CSNEMs from data.
We generated data from mixtures of NEMs of varying size: we varied the size of
the NEMs in the mixture to contain nA = 3, 5, 10, or 20 actions, and we varied
the number of NEMs in the generating model from j = 1 to j = 5, inclusive, with
j = 1 being equivalent to a simple NEM model. The number of effects nE was
fixed at 1000. We generated 30 mixtures corresponding to each configuration of j
and nA, resulting in a total of 600 generated models. To generate each mixture,
first we generated j random directed graphs G1, . . . , Gj of nA nodes, by drawing
each of the possible n2

A edges of the graph with a probability of 0.2 for graphs
of size nA < 20 and a probability of 0.04 for graphs of size nA = 20 (with the
higher edge density of 0.2 for 20 nodes, all nodes become reachable from all other
nodes, yielding degenerate effect patterns where each effect is either affected by
all actions, or by none). Next, for each effect, with probability 0.3 we attach it
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nowhere, otherwise, we uniformly randomly attach it to one of the nA × j nodes
in all of these graphs. Given these graphs and effect attachments, we infer which
effects are reachable from each node, and compute the nA × nE binary effect
matrix FT , where FT

as = 1 if and only if effect s is reachable from action a in
any one of the j graphs. Next, we generate a log-odds matrix that represents a
noisy measurement of this effect matrix by drawing from log Beta(β,1)

Beta(1,β) for each

‘true’ cell and from log Beta(1,β)
Beta(β,1) for each ‘false’ cell, with β = 10. This process

generates the log-odds matrix R that we use as input to our learning method.
Additionally, to examine the effect of noise in the measurement of effects on
model inference, we generated log-odds matrices using β = 1, 2, 5 from the first
10 generating mixtures with nA = 20, j = 1, 3, 5.

Since in real-world applications we usually do not know how many contexts
are truly needed to describe a process under study, we sweep through values of
k ranging from 1 to 8, and learn a k-CSNEM for each value of k from each gen-
erated log-odds matrix. CSNEMs were learned using the MC-EMiNEM imple-
mentation in the nem R package, with the learned network taken from the end
of a 20000 sample chain, the empirical Bayes step performed every 5000 steps,
an acceptance sparsity prior of 0.5, and knA edges changed in every MCMC
step (see Niederberger et al. [16] for details on how these settings are used in
MC-EMiNEM). The edge-wise prior for permissible edges was set to 0.2.

We evaluate each k-CSNEM learned from each log-odds matrix both in terms
of the ability of the CSNEM to accurately model which effects are differentially
expressed in response to each action and in terms of the relationships inferred
among actions. In the former case, we use the F-measure to quantify how well the
effect matrix F of the learned CSNEM matches that of the generating CSNEM,
with the interpretation that if an effect responds to an action in both the learned
and the generating model, it is a true positive, if it doesn’t respond in the learned
model but does in the generating model it is a false negative, if it doesn’t respond
in either model it is a true negative, and if it responds in the learned model but
not the generating model it is a false positive. Figure 3(a) shows the F-measures
for learning the effect matrix across our simulations for the almost-noiseless case
of β = 10. Figure 3(c) shows the F-measures for learning the effect matrix of a
20-action network from log-odds matrices generated with varying settings of β.

To compare the learned graph structures to the generating graph structures,
we must first determine which contexts in the learned model correspond to which
contexts in the generating model. For each action a in each model, we obtain a
list of contexts that are distinguishable in terms of which actions are ancestors
of the action a. We then match each of these contexts in each model to their
best match in the other model. Each ancestor that the two contexts in the best
match have in common counts as a true positive, each ancestor that appears in
the context from the learned model but not in the context from the generating
model counts as a false positive, and each ancestor that appears in the context
from the generating model but not in the context from the true model counts
as a false negative. We use these counts to summarize agreement between the
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Fig. 3. Box plots of simulation F-measures. Each plot represents an aggregate of results
from 30 random simulation replicates. Grid rows correspond to the number of contexts
in the generating model, the x-axis in each of the grid cells indicates the number of
contexts in the learned model, and the y-axis represents: (a) the F-measure of recovering
the generating model’s effect matrix from the learned model across different sizes of
action sets (grid columns) from log-odds matrices generated with β = 10, (b) the
F-measure of recovering ancestry relationships, (c) the F-measure of learning the effect
matrix of a 20-action network from log-odds matrices generated with varying settings
of β (grid columns), and (d) the F-measure of learning the effect matrix from 10-action
networks of varying density (grid columns) with log-odds generated using β = 10.

structures of two CSNEMs in terms of an F-measure which we call the pairwise
ancestry F-measure. Figure 3(b) shows the pairwise ancestry F-measures across
our simulations.

When the learned model is a plain NEM (k = 1), we see that as the gener-
ating model has more contexts, the recovery of both the effect and the ancestry
pattern worsens (with the exception of the 10 actions case, examined below).
This confirms that a CSNEM is necessary when multiple contexts are indeed in
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play in the generating system. When the learned model has multiple contexts,
even when the number of contexts in the learned model exceeds the number of
contexts in the generating model, the approach does not seem to be suscepti-
ble to overfitting. This pattern hold as we increase noise (decrease β) in data
generation.

At nA = 10 the NEM appears to recover the effects patterns well even when
there are multiple contexts in the generating models, and we hypothesize that
this is because of high connectivity in those ground truth networks: the average
in-degree and out-degree of node is the product of one less than the number
of actions times the edge density. We generated 20 mixtures for varying node
densities (0.04, 0.1, 0.2, 0.5) with j = 1, 3, 5 contexts and nA = 10 nodes,
and examined the effect-matrix F-measures across densities (Fig. 3(d)). Denser
networks are perfectly recovered by single-context NEMs; this is likely because
denser networks are more likely to lead to fully-connected transitive reductions,
reducing the number of unique response patterns of effects, yielding data that
is easier to capture in a simple NEM model. When the generating models are
not too dense, CSNEMs are better than NEMs at recovering the effect patterns
generated from multiple-contexts.

4.2 Application to NaCl Stress Response in S. cerevisiae

We apply our method to the exploration of NaCl stress response pathways in
S. cerevisiae. We consider data obtained from a wild-type (WT) strain and 28
knockout strains. Transcript abundances were measured by microarray for each
strain prior to NaCl treatment and 30 min after 0.7 M NaCl treatment. The data
collection was described in detail in previous work [1,8].

We are interested in how the gene knockouts change the cells’ response to
stress. Therefore, the actions A in our model correspond to the knockouts. Since
we use microarray data, the observations E correspond to transcripts. The change
in response is quantified as a change in log-fold-change. For each strain, we have
the log-fold-change of transcript abundances in the sample 30 min after NaCl
treatment as compared to the abundances in the sample prior to treatment. We
then consider the difference between the log-fold-change in each knockout strain
and that in the wild-type strain. To obtain the log-odds matrix R we use an
empirical Bayes method to obtain log-posterior-odds of differential expression
[10,24] which is implemented in the limma R package [23]. Figure 4 shows the
3-CSNEM that was learned from the data.2 The MC-EMiNEM settings used
for learning both of these models are the same as those used for learning in the
simulation experiments.

The inferred network captures many known and several new features of the
yeast stress responsive signaling network. The Hog1 kinase is a master regulator
of the osmotic stress response [15]. The CSNEM network correctly places Hog1
at the top of the hierarchy in paths with known co-regulators. For example, the

2 An NEM learned from the data is at https://github.com/sverchkov/mc-em-cs-nem/
blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf.

https://github.com/sverchkov/mc-em-cs-nem/blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf
https://github.com/sverchkov/mc-em-cs-nem/blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf
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network captures paths containing Hog1 and CK2 complex subunits Cka2 and
Ckb1/2—Hog1 is known to interact physically with Cka2, and the two kinases
regulate an overlapping set of genes [3]. The network also correctly predicts
that the transcription factor Msn2 is regulated by Hog1, Pde2, and Snf1—all
known regulators of Msn2 [9,14,18,20]; yet a separate branch represents only
Pde2 and Msn2, consistent with Pde2 playing a more significant role in regu-
lating this transcription factor during salt stress [3]. Another example is seen in
YGR122W, a poorly characterized protein required for processing the transcrip-
tional repressor Rim101—the CSNEM correctly puts YGR122W and Rim101 in
the same paths, with at least one regulatory branch shared with Hog1 control.

The CSNEM naturally produces groups of effects where each group comprises
those effects (i.e. transcripts) that are reachable from contexts of actions in
the graph. We examined the groups of effects in terms of Gene Ontology (GO)
enrichments. Figure 5 shows a comparison of these enrichments to those obtained
from grouping effects by the attachments from a learned NEM. The figure also
shows a coarser split of the effects into groups based on CSNEM contexts: if
an action was merged from two or more contexts in the single-network CSNEM
representation, all the effects attached to it are considered reachable from both
(or all three) contexts from which the action was merged. Each column in the
figure corresponds to a GO term and each row corresponds to a combination
of contexts or an action. A point in the figure indicates that the set of effects
reachable from the context(s) or action was found to be significantly enriched
for the GO term. Significance was defined according to a hypergeometric test
with the Benjamini-Hochberg method used to control the false discovery rate at
0.05; only groups of five or more effects were considered for enrichment analysis.

A key advantage of our approach is that regulators can be represented in
multiple pathways, capturing regulators that may have distinct roles in different
cellular compartments or cell cycle phases. In fact, several of the GO terms for
which the CSNEM effect groups are enriched are associated with subcellular
localization and include transcripts encoding proteins localized to the nucleus,
nucleolus, plasma membrane, endoplasmic reticulum, mitochondria, peroxisome,
and cytoskeleton. The coarser split of effects by contexts also shows that there
are clear divisions of localization across contexts in the CSNEM.

An interesting example of the benefits of the CSNEM approach is seen in
its ability to capture the disparate signaling roles of the phosphatase Cdc14,
a key regulator of mitotic progression in dividing cells [27]. Inactive Cdc14 is
tethered to the nucleolus during much of the cell cycle but released upon mitosis
to other subcellular regions where it dephosphorylates cyclins and other targets
[28]. Separate from its role in the cell cycle, Cdc14 was recently linked to the
stress response in yeast [2,3], although its precise role is not clear.

The CSNEM network places Cdc14 in multiple pathways that capture the
distinct functions of the phosphatase. One path represents an isolated connec-
tion of Cdc14 to a group of genes regulated by the cell cycle network. Many
of these genes are known to be regulated by Cdc14 during normal cell cycle
progression. But consistent with a second role in the stress response, Cdc14 is
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Fig. 4. The 3-CSNEM network learned from S. cerevisiae NaCl stress knockout
microarray data. Action nodes and action-action edges are colored according to the
NEM member in the mixture from which they came, in cyan, magenta, or yellow.
Nodes that were merged because of identical ancestors in multiple mixture members
are colored according to subtractive color mixing (cyan and magenta make blue, cyan
and yellow make green, magenta and yellow make red, and all three make black). Effects
are colored and grouped according to the actions to which they are attached. Where
the number of effects in a group is fewer than 10, the effects are listed. Where it is 10
or more, the number of effects in the group is shown. Action-action edges are solid and
action-effect edges are dashed. (Color figure online)
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also nested in a path regulated by Snf1, a kinase that responds to both nutri-
ent/energy restriction and osmotic stress resulting from salt treatment [29]. The
Snf1-Cdc14 pathway is connected to 31 effectors that include genes induced by
stress and related to glucose metabolism. Work from the Gasch Lab previously
showed through genetic analysis that Snf1 and Cdc14 function, at least in part,
in the same pathway during the response to salt stress [3]. Yet both Cdc14 and
Snf1 have other functions in the cell, leading to the regulation of only partially
overlapping gene sets. Thus, the CSNEM approach successfully captured this
complex regulatory distinction for Cdc14 and Snf1.

5 Discussion

We have introduced CSNEMs, a generalization of NEMs which can explicitly
model the different interactions that genes may have in different contexts. We
have shown how a CSNEM can be viewed as a mixture of NEMs, and that the
task of learning such a mixture can be cast as a single NEM-learning task with
a modified data matrix and constrained action graph structure in which actions
are replicated k times. Particularly, we took the approach of using a hard mixture
where effects and actions are assigned to different contexts. A natural avenue for
future investigation would be the exploration of soft-mixture approaches, which
may prove more scalable for larger numbers of contexts and actions.

Applying our method to simulated data has shown that learning CSNEMs
leads to good recovery of the effect patterns and ancestry relations that were
present in the generating model. The results also show that a CSNEM is neces-
sary when the generating model truly has multiple contexts, but slight over- or
underestimation of the number of contexts does not seem to lead to overfitting.
In practice, the correct number of contexts that a learned model should have is
not known, and optimal selection of k is still an open problem that we plan to
explore in future work. Existing approaches to model selection, such as a search
for a plateau in likelihood or the use of model complexity measures such as AIC
point to possible solutions to this problem.

Our analysis of a CSNEM network learned from S. cerevisiae NaCl-stress
knockout microarray data revealed that the CSNEM does recover known regu-
latory patterns and moreover, captures known patterns of context-specificity in
the genes under study. Analysis of GO term enrichments of the effects reach-
able from CSNEM nodes shows that many effect groups are associated with
subcellular localization, a pattern even more evident in examining a coarser
division of the effects, based on mixture contexts. We believe that localization
may be one source of context-specificity that is relevant in many applications.
The main motivation for developing CSNEMS was the observation that effect
nesting may not be an appropriate assumption for some settings because of the
context-specific nature of interactions that some genes can have, and perhaps
more explicit modeling of contexts of interaction can lead to more faithful rep-
resentations of the underlying biology.
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Abstract. We present a novel algorithmic framework for solving
approximate sequence matching problems that permit a bounded total
number k of mismatches, insertions, and deletions. The core of the frame-
work relies on transforming an approximate matching problem into a
corresponding exact matching problem on suitably edited string suffixes,
while carefully controlling the required number of such edited suffixes
to enable the design of efficient algorithms. For a total input size of
n, our framework limits the number of generated edited suffixes to no
more than a factor of O(logk n) of the input size (for any constant k),
and restricts the algorithm to linear space usage by overlapping the gen-
eration and processing of edited suffixes. Our framework improves the

best known upper bound of n2k1.5/2Ω(
√

log n/k) for the classic k-edit
longest common substring problem [Abboud, Williams, and Yu; SODA
2015] to yield the first strictly sub-quadratic time algorithm that runs
in O(n logk n) time and O(n) space for any constant k. We present simi-
lar subquadratic time and linear space algorithms for (i) computing the
alignment-free distance between two genomes based on the k-edit average
common substring measure, (ii) mapping reads/read fragments to a ref-
erence genome while allowing up to k edits, and (iii) computing all-pair
maximal k-edit common substrings (also, suffix/prefix overlaps), which
has applications in clustering and assembly. We expect our algorithmic
framework to be a broadly applicable theoretical tool, and may inspire
the design of practical heuristics and software.

1 Introduction

Numerous problems related to exact sequence matching can be solved efficiently,
often within optimal time and space bounds, typically using versatile string
c© Springer International Publishing AG, part of Springer Nature 2018
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data structures such as suffix trees and suffix arrays. However, variants of such
sequence matching problems that permit a limited number of mismatches or edits
(insertions/deletions/mismatches) are often challenging and many problems are
still open. For example, the classic problem of finding the longest common sub-
string (LCS1) between a pair of sequences is easily solvable in optimal linear
time using suffix trees, a solution that dates back to the 70’s [31]. However,
when the sequences contain (an unbounded number of) wild-card characters,
an n2−o(1) time conditional lower bound, based on the Strong Exponential Time
Hypothesis (SETH), comes into play [2]. As for the k-edit LCS problem2, the best
known result is only slightly better than a straightforward dynamic programming
solution. Specifically, the run time is n2k1.5/2Ω(

√
log n/k) and the algorithm is

randomized [1].
In recent times, there is renewed interest in approximate sequence matching

problems due to their wide applicability in computational biology. Many funda-
mental problems between evolutionarily related genomes, or components to the
solutions thereof, can be cast as edit distance problems, with bounded versions
of significant practical interest. Short read sequencers sport low error rates, typ-
ically <1–3% of sequence length, which is within a few hundred bases. Many
problems in relating such reads to each other, or to the source genomes they
originate from, can be effectively modeled as bounded edit distance problems.
While many such problems can be solved efficiently in practice via heuristics,
their worst-case run times are often the same as alignment-based methods that
allow unconstrained edit distance. Thus, an algorithmic framework for approxi-
mate sequence matching that can lead to the design of strictly subquadratic time
algorithms for such problems is of significant theoretical and practical interest.

Our Contributions and Relation to Prior Work

In this work, we focus on multiple approximate sequencing matching problems
under a bounded number k of edits. We expect k to be a small constant in
practice. Our algorithms work for arbitrary values of k, but they are designed
to be superior in both asymptotic and practical runtimes for small values of k.
We first develop a novel algorithmic framework that is potentially applicable to
a broad class of problems, including the four problems solved in this paper. The
core of the framework is a transformation by which an approximate matching
problem on exact suffixes can be converted into an exact matching counterpart
on approximate suffixes, specifically, suffixes with at most k edits. The number
of such k-edited suffixes generated is constrained to a polylog factor of the input
size, through a non-trivial application of Sleator and Tarjan’s classic heavy path
tree decomposition technique [26]. As a result, the framework yields algorithms
with runtime behavior of O(n poly log(n)) while consuming only linear O(n)
space, for a total input of size n, marking a significant improvement over current

1 In this paper, we use LCS to denote the longest common substring. Note that LCS
is frequently used in literature to refer to the longest common subsequence instead.

2 Find the longest substring of a sequence that matches with a substring of another
sequence, allowing ≤ k edits.
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worst-case runtimes that are quadratic or near quadratic. Using this framework,
we propose asymptotically faster algorithms for three well known and widely
applicable problems in biological sequence analysis, and derive the first strictly
sub-quadratic time algorithm for the k-edit LCS problem as a corollary to one
of these. As will become evident later, the design of appropriate k-edited suffixes
and algorithms for processing them are specific to the problem at hand, leading
to a rich algorithmic framework for tackling additional approximate sequence
matching problems.

Our first result concerns alignment-free genomic distance based on the aver-
age common substring (ACS) measure, proposed by Burstein et al. [9]. The ACS
between genomes X and Y is:

ACS(X,Y) =
1

|X|

|X|∑

i=1

L[i], where L[i] = max
j

|LCP(Xi,Yj)|

Here Xi is the i-th longest suffix of X and LCP denotes the longest common
prefix. The distance metric based on ACS is defined as

Dist(X,Y) =
1
2

(
log |Y|

ACS(X,Y)
+

log |X|
ACS(Y,X)

)
− 1

2

(
log |X|

ACS(X,X)
+

log |Y|
ACS(Y,Y)

)
.

Since its introduction, ACS has proven to be useful in multiple applications
including phylogeny reconstruction [4,6,10,12,13,15]. It was later observed that
its approximate variants, k-mismatch and k-edit ACS, that are based on permit-
ting k mismatches (or k edits, respectively) in the LCP computation, more accu-
rately model genome evolution and lead to higher quality phylogenetic trees [18].
The ACS computation using exact substring composition, as described above, is
straightforward to compute in linear time using suffix trees [9]. The k-mismatch
ACS and the k-edit ACS can be computed by a trivial O(n2k) dynamic program-
ming algorithm, which is prohibitively expensive for large genomes. Leimeis-
ter and Morgenstern [18] proposed algorithms that heuristically estimate k-
mismatch ACS. Apostolico et al. [5] were the first to break the O(n2k) bound
for an exact solution by proposing an O(n2/ log n) run time algorithm. However,
the first strictly sub-quadratic algorithms are by Thankachan et al. [3,27], that
run in O(n logk n) time. Also see [22,24,28,29].

To date, there is no non-trivial solution for the k-edit ACS, beyond the
straightforward O(n2k) algorithm. Unfortunately, the previous techniques for k-
mismatch ACS do not easily extend to k-edit ACS. In comparison to mismatches,
insertions and deletions are much harder to account for as they introduce a
combinatorially larger number of possibilities (3k ways of making modifications
at k given locations) and also alter sequence lengths. Using the algorithmic
framework presented in this paper, we present the first strictly sub-quadratic
time algorithms for both k-edit ACS and k-edit LCS, that run in O(n logk n)
time and O(n) space for any constant k3.
3 Throughout the analysis, we treat k as a constant for brevity. However, with a

tighter analysis (deferred to full version), we can bound the time and space by
O(n(c log n)k/k!) and O(ckn), respectively for a constant c without making any
such assumption on the value of k.
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Theorem 1. Given two sequences X and Y of n characters in total and a con-
stant k, we can compute ∀i, L[i] = maxj |LCPk(Xi,Yj)| in O(n logk n) time using
O(n) space. Here |LCPk(Xi,Yj)| is the length of the longest common prefix of Xi

and Yj after allowing ≤ k edits.

In addition, we provide sub-quadratic algorithms for the following problems.
Note that the size of the alphabet set is O(1) in all these applications, however
we make no such assumptions in the complexity analysis.

– Read mapping: A collection of m reads of length � each can be mapped to
a reference genome G while permitting at most k edits per read in O((n +
occ) logk n) time using O(n) space for any constant k. Here n = |G| + m� is
the input size and occ is the output size.

– All-pair Maximal k-edit Common Substrings: Given a collection of m
reads of total length n, all pairwise k-edit maximal common substrings of
length ≥ τ can be computed in O((n+ occ) logk n) time using O(n) space for
any constant k. Here occ is the output size.

– All-pair Maximal k-edit suffix/prefix overlaps: Given a collection of m
reads of total length n and a length threshold τ , all pairwise k-edit maximal
suffix/prefix overlaps of length ≥ τ can be computed in O((n + occ) logk n)
time using O(n) space for any constant k. Here occ is the output size.

All of these are widely studied problems with excellent heuristic solutions and
software availability. The read mapping problem is typically solved using seed-
and-extend heuristics with exact matching or spaced seeds computed using a
pre-built index of the genome such as BWT or FM-index (e.g. [17,19,21]; see [20]
for a survey). Similarly, the other two problems are also solved through seed-
and-extend type filtering solutions such as suffix filtering [16,30], spaced seeds
filtering [8], and substring filtering [25]. Our goal is to present asymptotically
efficient and sub-quadratic worst-case run-time algorithms for these commonly
solved problems to improve upon their upper bounds. We remark that the algo-
rithms presented here can also be used in conjunction with any existing seed-
based heuristics by permitting seeds with bounded edit distance.

Roadmap. In Sect. 2, we present an overview of our framework and the key
results, which are instrumental in achieving the above claimed worst-case run
times. The proofs of the key results of our framework are described in detail in
Sect. 3. We complete the proof of Theorem 1 in Sect. 4. In Sect. 5, we present our
solutions to the other problems listed.

2 Our Algorithmic Framework

Our approximate sequence matching framework takes a collection of two or more
sequences and a constant k as input. Then, a controlled number of changes
(edits) are applied to the suffixes of all input sequences, so that an approximate
sequence matching task over the input can now be transformed to an equivalent
exact prefix matching over the newly generated edited-suffixes. We illustrate our
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framework with a collection of two input sequences (X and Y of total length
n). The framework relies on a Generalized Suffix Tree (GST), a compact trie
representation of all suffixes of all input sequences. It takes O(n) space for storage
and O(n) time for construction [23,31]. For any two suffixes Xi and Yj , we can
compute |LCP0(Xi,Yj)| = |LCP(Xi,Yj)| = z in constant time using GST and
|LCPk(Xi,Yj)| for any k > 0 in O(3k) time via the following recursion:

|LCPk(Xi,Yj)| = z + max

⎧
⎨

⎩

1 + |LCPk−1(Xi+z+1,Yj+z+1)| (substitution)
|LCPk−1(Xi+z+1,Yj+z)| (deletion in Xi)
|LCPk−1(Xi+z,Yj+z+1)| (deletion in Yj)

Observe that while computing LCPk, a substitution (in at least one suffix)
is equivalent to deletions in both suffixes at the same location. For example,
Xi = AATCGGT.. and Yj = AATGGTT.. disagree at the 4th position. To make
them agree more, we can either delete the 4th character from both suffixes, or
change the 4th character in at least one suffix to match the 4th character of
the other. Also, deletion in Xi (respectively, Yj) is equivalent to an appropriate
insertion in Yj (respectively, Xi). Therefore, in general we have many possible
(equivalent) ways of correcting the first k disagreements between Xi and Yj .
Note that the length of the resulting LCPk may differ (slightly) as per our choice
within the equivalent cases. However, the framework we propose exploits the fact
that many of the equivalent cases will lead to the correct solution, and makes a
suitable fixed choice.

Overview. A suffix after applying ≤ k edits is called a k-edited suffix. Let X′
i

and Y′
j be k-edited suffixes derived from Xi and Yj , respectively. Then, the value

of |LCP(X′
i,Y

′
j)| can range anywhere between 0 and |LCP2k(Xi,Yj)|. However, if

the modifications turn exactly the first k disagreeing positions into agreements,
then |LCP(X′

i,Y
′
j)| is precisely |LCPk(Xi,Yj)|. A set of two such edited suffixes

is called an (i, j)k-maxpair. We call a collection of k-edited suffixes an order-
k universe (denoted by Uk) if for all (i, j) pairs, ∃(i, j)k-maxpair ⊆ Uk. Note
that U0 is simply the set of all suffixes of X and Y. Trivially, there exists an
order-k universe of size

(
n
2

)
. However, the core of our framework is a meticulous

construction of an order k universe of size O(n logk n), based on the heavy path
decomposition strategy by Sleator and Tarjan [26] as in Cole et al. [11]. Various
approximate sequence matching problems can then be solved via processing Uk

in linear or near-linear time.

Representation of Edited Suffixes. Clearly, it is cumbersome to keep track
of all edits applied on suffixes during the creation of edited-suffixes. However,
we have the following crucial observation: for each edited suffix, we do not need
to keep track of all edits, but only substitutions and the total number of
insertions and deletions. Specifically, let X′

i be a k-edited suffix obtained via
a combination of insertions, deletions and substitutions on Xi. Then, X′

i can
be simply represented as a concatenation of a combination of O(k) sub-strings
of X and characters in the alphabet set, along with the following two satellite
information.
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– δ(X′
i): number of insertions and deletions made to transform Xi to X′

i.
– Δ(X′

i): set of positions in X′
i corresponding to substitutions in Xi.

Example: Let Xi = CATCATCATCAT . We consider the following edits simul-
taneously on Xi: delete the 2nd and 10th character, change the 4th charac-
ter to T and the 9th character to A, and insert G after position 6. Then,
X′

i = CTTATGCAAAT , δ(X′
i) = 3 and Δ(X′

i) = {3, 9}.

Lemma 1. Let X′
i (respectively, Y′

j) be obtained via at most k edits on Xi

(respectively, Yj). Then, the value of |LCP(X′
i,Y

′
j)| can range anywhere between

0 and |LCP2k(Xi,Yj)|. However, if we impose the following condition, then
|LCP(X′

i,Y
′
j)| is at most |LCPk(Xi,Yj)|.

|Δ(X′
i) ∪ Δ(Y′

j)| + δ(X′
i) + δ(Y′

j) ≤ k.

Proof. If we allow k edits on each suffix, we can correct at most 2k disagree-
ments. However, the condition limits the total number of insertions/deletions
and distinct substitution positions. 	


We now define the notion of (i, j)k-maxpair in a formal way.

Definition 1. Let X′
i be a k-edited suffix derived from Xi and Y′

j be a k-edited
suffix derived from Yj. Then, we call the set {X′

i,Y
′
j} an (i, j)k-maxpair iff

|LCP(X′
i,Y

′
j)| = |LCPk(Xi,Yj)| and |Δ(X′

i) ∪ Δ(Y′
j)| + δ(X′

i) + δ(Y′
j) ≤ k.

Lemma 2. Given two k-edited suffixes, we can compute the length of their
longest common prefix (hence their lexicographic order) in O(k) time via O(k)
number of |LCP| queries on the GST.

3 Details of the Construction of Uk

We show how to construct the universe Uk in small parts (in linear work space).
The parts of Uk, denoted by {Pk

1 ,Pk
2 ,Pk

3 , ...} are its subsets (not necessary
disjoint) such that the following properties are ensured.

1. maxf |Pk
f | = O(n)

2.
∑

f |Pk
f | = O(n logk n)

3. for any (i, j), ∃f such that a two-element subset of Pk
f is an (i, j)k-maxpair

The construction procedure is recursive. We first construct U0, then U1 from U0

and so on. The base case, i.e., an order 0 universe U0 has exactly one part, the
set of all suffixes of X and Y. We now proceed to the inductive step, where we
assume the availability of order-h universe Uh (specifically, its parts Ph

1 ,Ph
2 , . . . )

for an h ≥ 0 and the task is to obtain the parts Ph+1
1 ,Ph+1

2 , . . . of Uh+1. To do
so, we apply the following steps on each Ph

f . We describe the procedure first and
prove its correctness later.
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1. Let m = |Ph
f | and T be a compact trie of all h-edited suffixes in Ph

f . Notice
that T is GST when h = 0. Classify the nodes in T into light or heavy: the
root is always light and any other node is heavy, if it is the heaviest child4

of its parent. Furthermore, a maximal downward path starting from a light
node where all other nodes on the path are heavy is called a heavy path. A
key property is that the number of heavy paths that intersect any root to leaf
path is ≤ log m [11,26]. Equivalently, the number of light nodes on any root
to leaf path is ≤ log m. Therefore the sum of subtree sizes of all light nodes
in T is ≤ m log m, because each leaf contributes to at most log m light rooted
subtree.

2. Corresponding to each internal light node u in T , there will be a part, say
Ph+1

t . The steps involved in its construction are as follows. Let Q be the set
of h-edited suffixes corresponding to the leaves in the subtree of u, α be the
h-edited suffix corresponding to the particular leaf on the heavy path through
u. Then,

Ph+1
t = {α}

⋃

β∈Q,β �=α

{β, βI , βD, βS}

Here, βI , βD and βS are (h+1)-edited suffixes, obtained by performing exactly
one edit on β w.r.t. α as follows: Let z = |LCP(α, β)| and σ be the (z + 1)th
character of α, then

– βI is obtained by inserting the character σ in β after the zth character.
– βD is obtained by deleting the (z + 1)th character of β.
– βS is obtained by substituting the (z + 1)th character of β by σ.

See Fig. 1 for an illustration. We now prove that the parts created in the
above manner satisfy the desired properties.

3.1 Correctness Proof (via Mathematical Induction)

All three properties hold true for k = 0 (base case). Assuming they are true
for all values of k up to h, we now prove it for h + 1. From our construction
procedure, |Ph+1

t | = 1 + 4(|Q| − 1) < 4|Ph
f | = 4m. Therefore, the maximum size

of a part can be bounded by maxt |Ph+1
t | < 4maxf |Ph

f | = O(n). The total size of
all pairs derived from Ph

f is 4
∑

u is light subtree-size(u) ≤ 4m log m. Therefore,
the total size of all parts in Uh+1 is
∑

t

|Ph+1
t | ≤ 4

∑

f

|Ph
f | log |Ph

f | < 4
( ∑

f

|Ph
f |

)(
log

∑

f

|Ph
f |

)
= O(n logh+1 n)

Next we prove the existence of an (i, j)h+1-maxpair in at least one part, say
Ph+1

t . Without loss of generality, assume {X′
i,Y

′
j} is an (i, j)h-maxpair and is a

subset of Ph
f . Then,

|LCP(X′
i,Y

′
j)| = |LCPh(Xi,Yj)| and |Δ(X′

i) ∪ Δ(Y′
j)| + δ(X′

i) + δ(Y′
j) ≤ h

4 The child with the largest number of leaves in its subtree (ties broken arbitrarily)
among its siblings.
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Fig. 1. Illustrates an edit operation along a suffix β, at the point where it diverges
from a heavy path (shown as a thick wavy line). For insertion (βI) and substitution
(βS), the modification is made to conform to the next character along the heavy path.

Let w be the lowest common ancestor of the leaves corresponding to X′
i and Y′

j

in the trie T , l = |LCP(X′
i,Y

′
j)|, σ be the leading character on the outgoing edge

from w towards its heavy child, and Ph+1
t be the part created w.r.t. the heavy

path through w. We now prove there exists an (i, j)h+1-maxpair ⊆ Ph+1
t . We

have the following cases.

Case 1: At w, both X′
i and Y′

j diverge from the heavy path through w. Then the
following edited suffixes, in addition to X′

i and Y′
j , are in Ph+1

f . Let

– X′′
i be the edited suffix obtained by deleting the (l + 1)th character of X′

i.
– Y′′

j be the edited suffix obtained by deleting the (l + 1)th character of Y′
j .

– X′′′
i be the edited suffix obtained by substituting the (l + 1)th character of X′

i

by σ.
– Y′′′

j be the edited suffix obtained by substituting the (l +1)th character of Y′
j

by σ.

It can be easily verified that one of the following subsets of Ph+1
t is an (i, j)h+1-

maxpair: {X′
i,Y

′′
j }, {X′′

i ,Y′
j}, {X′′′

i ,Y′′′
j }.

Case 2: At w, exactly one among X′
i and Y′

j diverges from the heavy path. With-
out loss of generality, assume the diverging suffix is X′

i. Then the following edited
suffixes, in addition to X′

i and Y′
j , are in Ph+1

f . Let

– X′′
i be the edited suffix obtained by deleting the (l + 1)th character of X′

i.
– X′′′

i be the edited suffix obtained by substituting the (l + 1)th character of X′
i

by σ.
– X′′′′

i be the edited suffix obtained by inserting σ in X′
i after l characters.

Here also, it can be easily verified that one of the following subset of Ph+1
t is

an (i, j)h+1-maxpair: {X′′
i ,Y′

j}, {X′′′
i ,Y′

j}, {X′′′′
i ,Y′

j}. This completes the correct-
ness proof.
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3.2 Time and Space Complexity Analysis

First, we consider the recursive step of creating parts out of Ph
f . The trie T can

be constructed in O(m log m) time (recall m = |Ph
f |) with the following steps.

1. First, sort the edited suffixes in Ph
f in time O(m log m) via merge sorting.

Note that any two k-edited suffixes can be compared in O(k) time (refer to
Lemma 2).

2. Then, compute the LCP between every consecutive pair of edited suffixes in
the sorted list and build the trie T using standard techniques from the suffix
tree construction algorithms [14]. This step takes only O(m) time.

Note that the part corresponding to each light node u can be obtained in
time proportional to the subtree size of u. Therefore, the time for deriving parts
from Ph

f is O(m log m). In other words, parts of Uh+1 can be obtained from
parts of Uh in O(log n

∑
f |Ph

f |) time for h = 0, 1, 2, . . . , k − 1. Total time is

log n
∑k−1

h=0 |Ph
f | = O(n logk n).

The parts can be created (and processed) one at a time by keeping exactly
one partition in each Uh for h = 0, 1, 2, . . . , k. Therefore, the working space is∑k

h=0 maxt |Ph
t | = O(n).

Lemma 3. The universe Uk can be created in parts in O(n logk n) time using
O(n) space.

3.3 Obtaining the Parts of Uk with Its Elements Sorted

We now present a more careful implementation of the above steps, so that the
parts can be generated with their elements in sorted order without incurring
additional comparison sorting costs. Specifically, we show how to process a light
node u in T (the trie over all edited suffixes in Ph

f ) and construct the correspond-
ing part Ph+1

t in Uh+1 with its elements sorted. We use the classic result that
two sorted lists of sizes p and q (q ≤ p) in the form of balanced binary search
trees (BSTs) can be merged using O(q log(p/q)) comparisons [7]. Throughout the
execution of our algorithm, we maintain edited suffixes in the form of a BST.
Key steps are below.

1. Initialize BST with exactly one element α.
2. Visit the heavy internal nodes on the heavy path through u in a bottom up

fashion. For each light child w of a heavy node v on the path (let l be the
string depth of v), merge BST with BSTw, BST I

w, BSTD
w and BSTS

w . Here,
– BSTw is the set of all strings corresponding to the leaves in the subtree

of w.
– BST I

w is BSTw after inserting the character α[l + 1] after lth position of
all strings in it.

– BSTD
w is BSTw after deleting the (l + 1)th character of all strings in it.
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– BSTS
w is BSTw after replacing the (l + 1)th character by α[l + 1] for all

its strings.
Note that BSTw can be created from T in time linear to its size. Since the
LCP of any two strings in BSTw is at least (l + 1), we can generate BST I

w,
BSTD

w and BSTS
w also in time linear to their size. Therefore, the merging

can be performed in time O(size(w) log(size(v)/size(w)) via fast merging.

The correctness is ensured as we are implementing the same algorithm described
earlier. The time for processing all light nodes in T is the sum of size(·) ×
log(size(parent(·))/size(·)) over all light nodes. This is the same as the sum
of log(size(parent(·))/size(·)) over all light ancestors of all leaves. However,
sum of log(size(parent(·))/size(·)) over all nodes on any root to leaf path is
log(size(root)). In summary, we have the following.

Lemma 4. We can generate Uk with its parts sorted in O(n logk n) time using
O(n) space.

4 Our Algorithm for Computing the Array L

We can compute ∀i, L[i] = maxj |LCPk(Xi,Yj)| with the following procedure.
First, initialize all entries in array L to 0 and then, process each part Pk

f one
after another as follows:

∀ X′
i,Y

′
j ∈ Pk

f s.t. |Δ(X′
i) ∪ Δ(Y′

j)| + δ(X′
i) + δ(Y′

j) ≤ k,

update L[i] ← max{L[i], |LCP(X′
i,Y

′
j)|}

After processing all the parts of Uk, we have maxj |LCPk(Xi,Yj)| = L[i] for all values
of i. Correctness follows from the fact that at some point during the execution of
the algorithm, we will process a pair X∗

i ,Y∗
d corresponding an (i, d)-maxpair with d =

arg maxj |LCPk(Xi,Yj)| and update L[i] ← |LCPk(Xi,Yd)|. However, we cannot afford
to examine all the pairs.

Our Strategy. ∀ h, t ∈ [0, k] and set φ, generate all non-empty sets S(h, t, φ) from
Pk

f , such that S(h, t, φ) =

{X′
i | φ ⊆ Δ(X′

i) and |Δ(X′
i)|+δ(X′

i) = h}∪{Y′
j | φ ⊆ Δ(Y′

j) and |Δ(Y′
j)|+δ(Y′

j) = t}
Observe that ∀ X′

i,Y
′
j ∈ S(h, t, φ), |Δ(X′

i) ∪ Δ(Y′
j)| + δ(X′

i) + δ(Y′
j)

= |Δ(X′
i)| + |Δ(Y′

j)| − |Δ(X′
i) ∩ Δ(Y′

j)| + δ(X′
i) + δ(Y′

j)

= h + t − |Δ(X′
i) ∩ Δ(Y′

j)|
≤ h + t − |φ|

This in turn implies that |LCP(X′
i,Y

′
j)| ≤ |LCPh+t−|φ|(Xi,Yj)|. Therefore,

∀ X′
i,Y

′
j ∈ S(h, t, φ) with h + t − |φ| ≤ k, |LCP(X′

i,Y
′
j)| ≤ |LCPk(Xi,Yj)|

Additionally, ∀ (i, j) pairs, there exists an (i, j)k-maxpair, say {X′′
i ,Y′′

j } and an f , such
that X′′

i ,Y′′
j ∈ Pk

f . In other words, there exists a non-empty set S(a, b, μ), such that
X′′

i ,Y′′
j ∈ S(a, b, μ). Specifically, a = |Δ(X′′

i )| + δ(X′′
i ), b = |Δ(Y′′

j )| + δ(Y′′
j ) and μ =
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Δ(X′′
i ) ∩ Δ(Y′′

j ). Since {X′′
i ,Y′′

j } is an (i, j)k-maxpair, |LCP(X′′
i ,Y′′

j )| = |LCPk(Xi,Yj)|
and a + b − |μ| ≤ k. Therefore,

|LCPk(Xi,Yj)| = max{|LCP(X′
i,Y

′
j)| | X′

i,Y
′
j ∈ S(h, t, φ) and (h + t − |φ| ≤ k)}

L[i] = max
j

{|LCP(X′
i,Y

′
j)| | X′

i,Y
′
j ∈ S(h, t, φ) and (h + t − |φ| ≤ k)}

Note that there is no |LCPk(·, ·)| in the above equation. Equivalently, we have
a new definition for L[·] using exact matching over k-edited suffixes. Therefore, the
computation of L is straightforward.

Proposed Algorithm. Initialize L[i] ← 0, ∀i. Then, ∀ h, t ∈ [0, k] and set φ
with h + t − |φ| ≤ k, process S(h, t, φ) as follows: sort all of its strings, and visit
the strings in both ascending and descending order. For each X′

i visited, update
L[i] ← max{L[i], |LCP(X′

i,Y
′
l)|}, where Y′

l is the last visited k-edited suffix of Y. Cor-
rectness is immediate from the above discussions.

Space and Time Analysis. Since we process the parts Pk
f one after another, space

is O(n). W.r.t. time complexity, note that each S(·, ·, ·) can be processed in time linear
plus the time for sorting its strings, which is O(|S(·, ·, ·)| log(|S(·, ·, ·)|)) using Lemma 2.
The sum of sizes of all S(·, ·, ·) generated from a particular Pk

f is at most k × 2k × |Pk
f |

i.e.,
∑ |S(·, ·, ·)| = O(n logk n). Total time is

∑ |S(·, ·, ·)| log(|S(·, ·, ·)|) = O(n logk+1 n).
To shave off an additional log n factor from the time complexity, we replace the

merge sorting by integer sorting. Specifically, we generate all Pk
f ’s with their elements

sorted using Lemma 4. We then process Pk
f s after replacing each edited suffix within

Pk
f by its lexicographic rank in Pk

f . Essentially, we replace all string comparison tasks
by integer comparison. Therefore, the main task now is the sorting of several sets of
integers of total size O(n logk n) and maximum size O(n). On sets of size Θ(n), we
employ counting sort. To sort smaller sets, we combine several of them up to a total
size of Θ(n). Then, a counting sort is performed, followed by a stable sort with the id
associated with the set in which each integer belongs to as the key. By scanning the
output in linear time, we can segregate the individual sorted lists. The time in both
cases is constant per element. By combining this with Lemma 4, we obtain the result
in Theorem 1.

5 Solving Approximate Sequence Matching Problems

5.1 Computing the k-edit Average Common Substring

The computation of ACSk from L is straightforward. We now demonstrate the appli-
cability of our algorithmic framework to three other important problems. The general
strategy is to begin with an order-0 universe U0 with one part: the set of all suffixes
of all input sequences. Then create Uk, in parts and process them one by one, using
problem specific steps. In all three cases, the correctness (deferred to full version) can
be obtained via straightforward adaptations of the correctness proof of Theorem 1.
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5.2 Our Algorithm for the Mapping Problem

Let {R1, R2, .., Rm} be the set of input reads and G be the reference genome. Our task
is to report all (i, j) pairs, s.t. the edit distance between Ri and G[j..(j + � − 1)] is
≤ k, where � is the read length. We use R′

i (resp., G′
j) for a k-edited copy of Ri (resp.,

Gj). Let S(h, t, φ) w.r.t. Pk
f be {R′

i ∈ Pk
f | |Δ(R′

i)| + δ(R′
i) = h and φ ⊆ Δ(R′

i)} ∪
{G′

j ∈ Pk
f | |Δ(G′

j)| + δ(G′
j) = t and φ ⊆ Δ(G′

j)}. Then, ∀ h, t ∈ [0, k] and set φ with
h+t−|φ| ≤ k, process all S(h, t, φ) as follows: ∀ R′

i, G
′
j ∈ S(h, t, φ) s.t. |LCP(R′

i, G
′
j)| ≥

�, report (i, j). The following correctness argument can be easily verified: we report a
pair (i, j) iff it is a valid output.

The processing of an S(·, ·, ·) is now an exact matching task. It can be implemented
in time linear to its size and the number of pairs reported. Therefore, time over all
S(·, ·, ·) is O(n logk n) plus the total number of pairs reported. Note that our algorithm
might report the same pair multiple times, but not more than O(logk n) times, because
for any (i, j) pair, the number of parts containing an R′

i and a G′
j is O(logk n) (follows

from our construction). Therefore total time is O((n + occ) logk n).

5.3 All-Pair Maximal k-edit Common Substrings

Let {R1, R2, .., Rm} be the set of input reads. Let Ri,x denotes the xth longest suffix
of Ri and let R′

i,x denotes a k-edited copy of Ri,x. Our task is to report all tuples
(i, x, j, y), s.t. |LCPk(Ri,x, Rj,y)| ≥ τ , i �= j and Ri[x − 1] �= Rj [y − 1]. Let S(h, t, φ)
w.r.t. a part Pk

f is the union of the following two sets.

{R′
i,x ∈ Pk

f | |Δ(R′
i,x)| + δ(R′

i,x) = h and φ ⊆ Δ(R′
i,x)}

{R′
j,y ∈ Pk

f | |Δ(R′
j,y)| + δ(R′

j,y) = t and φ ⊆ Δ(R′
j,y)}

Then, ∀ h, t ∈ [0, k] and set φ with h + t − |φ| ≤ k, process S(h, t, φ) as follows:
∀ R′

i,x, R′
j,y ∈ S(h, t, φ) s.t. |LCP(R′

i,x, R′
j,y)| ≥ τ, |Δ(R′

i,x)| + δ(R′
i,x) = h, |Δ(R′

j,y)| +
δ(R′

j,y) = t, Ri[x − 1] �= Rj [y − 1] and i �= j, report (i, x, j, y). This (exact matching)
task can be easily implemented in time linear to |S(h, t, φ)| and the number of tuples
generated using standard techniques (details deferred to full version). Also, we report
a tuple iff it is a valid output and we report one only O(logk n) times. Hence the total
run time is O((n + occ) logk n).

5.4 All-Pair Maximal k-edit Suffix/Prefix Overlaps

Borrowing from the terminologies defined in Sect. 5.3, the task here is to report all
tuples (i, j, y), s.t. i �= j and |LCPk(Ri, Rj,y)| ≥ (� − y + 1) ≥ τ . To do so, we process
all S(h, t, φ) with h+ t−|φ| ≤ k as follows: ∀ R′

i, R
′
j,y ∈ S(h, t, φ) s.t. |LCP(R′

i, R
′
j,y)| ≥

� − y + 1 ≥ τ, |Δ(R′
i)| + δ(R′

i) = h, |Δ(R′
j,y)| + δ(R′

j,y) = t and i �= j, report (i, j, y).
Again, this is an exact matching task, which can be easily implemented in time linear
to |S(h, t, φ)| and the number of tuples generated using standard techniques (details
deferred to full version). Also, we report a tuple iff it is a valid output and we report
one only O(logk n) times across all S(·, ·, ·)’s, yielding O((n + occ) logk n) total time.
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Abstract. Exploring the genetic diversity of microbes within the envi-
ronment through metagenomic sequencing first requires classifying these
reads into taxonomic groups. Current methods compare these sequenc-
ing data with existing biased and limited reference databases. Several
recent evaluation studies demonstrate that current methods either lack
sufficient sensitivity for species-level assignments or suffer from false pos-
itives, overestimating the number of species in the metagenome. Both
are especially problematic for the identification of low-abundance micro-
bial species, e. g. detecting pathogens in ancient metagenomic samples.
We present a new method, SPARSE, which improves taxonomic assign-
ments of metagenomic reads. SPARSE balances existing biased reference
databases by grouping reference genomes into similarity-based hierar-
chical clusters, implemented as an efficient incremental data structure.
SPARSE assigns reads to these clusters using a probabilistic model,
which specifically penalizes non-specific mappings of reads from unknown
sources and hence reduces false-positive assignments. Our evaluation
on simulated datasets from two recent evaluation studies demonstrated
the improved precision of SPARSE in comparison to other methods for
species-level classification. In a third simulation, our method success-
fully differentiated multiple co-existing Escherichia coli strains from the
same sample. In real archaeological datasets, SPARSE identified ancient
pathogens with ≤0.02% abundance, consistent with published findings
that required additional sequencing data. In these datasets, other meth-
ods either missed targeted pathogens or reported non-existent ones.

SPARSE and all evaluation scripts are available at https://github.
com/zheminzhou/SPARSE.

1 Introduction

Shotgun metagenomics generates DNA sequences directly from environmental
samples, revealing unculturable organisms in the community as well as those that
can be isolated. The resulting data represents a pool of all species within a sam-
ple, thus raising the problem of identifying individual microbial species and their

c© Springer International Publishing AG, part of Springer Nature 2018
B. J. Raphael (Ed.): RECOMB 2018, LNBI 10812, pp. 225–240, 2018.
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relative abundance within these samples. Methods for such taxonomic assign-
ment are either based on de novo assembly of the metagenomic reads, or take
advantage of comparisons to existing reference genomes. Here we concentrate
on the latter strategy, which relies on the diversity of genomes in ever-growing
reference databases. This strategy has been instrumental in identifying many
causative agents of ancient pandemics in reads obtained from archaeological
samples by detecting genetic signatures of modern human pathogens [26].

Published methods for taxonomic assignment can be divided into two cat-
egories. Taxonomic profilers maintain a small set of curated genomic markers,
which can be universal (e. g. used in MIDAS [16]) or clade-specific (e. g. used
in MetaPhlan2 [24]). Metagenomic reads that align onto these genomic markers
are used to extrapolate the taxonomic composition of the whole sample. These
tools are usually computationally efficient with good precision. However, they
also tend to show reduced resolution for species-level assignment [23], especially
when a species has a low abundance in the sample and, hence, may have few
reads mapping to a restricted set of markers.

Alternatively, taxonomic binners compare metagenomic reads against refer-
ence genomes to achieve read-level taxonomic classification. The comparisons
can be kmer-based (e. g. Kraken [25] and One Codex [15]) or alignment-based
(MEGAN [6], MALT [5] and Sigma [1]). Binning methods based on kmers are
usually fast, whilst alignment-based methods have greater sensitivity to distin-
guish the best match across similar database sequences. Benefiting from much
larger databases in comparison to genomic markers used by profiling meth-
ods, binning methods usually detect more microbial species at very low abun-
dance. However, they also tend to accumulate inaccurate assignments (false pos-
itives) [23] due to the incompleteness of the databases, resulting in reads from
unrepresented taxa being erroneously attributed to multiple relatives.

While microbial species of low abundance are hard to identify by marker-
based taxonomic profilers, the estimations of taxonomic binners can be hard to
interpret due to their low precision. This problem especially limits their appli-
cation to the in silico screening of microbial content in sequenced archaeological
materials [8]. Given that the ancient DNA fragments are expected to exist in low
proportions in these samples, methods need to identify weak endogenous signa-
tures hidden within a complex background that is governed by modern (envi-
ronmental) contamination. Furthermore, reads from archaeological samples are
fragmented and have many nucleotide mis-incorporations due to postmortem
DNA damage.

We identify two challenges that limit the performance of species-level assign-
ments. First and foremost, the reference database used for all taxonomic binnings
are not comprehensive. The vast majority of microbial genetic diversity reflect
uncultured organisms, which have only rarely been sequenced and analyzed.
Even for the bacteria that have genomic sequences, their data are biased towards
pathogens over environmental species. This leads to the next challenge where,
due to the lack of proper references, reads from unknown sources can acciden-
tally map onto distantly related references, mainly in two scenarios: (1) Foreign
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reads originating from a mobile element can non-specifically map to an identical
or similar mobile element in a known reference. (2) Reads originated from Ultra-
Conserved Elements (UCEs), which preserve their nucleotide sequences between
species, can also non-specifically map to the same UCE in an existing genome.

Addressing both of these challenges, we designed SPARSE (Strain Prediction
and Analysis using Representative SEquences). In SPARSE, we index all
genomes in large reference databases such as RefSeq into hierarchical clus-
ters based on different sequence identity thresholds. A representative database
that chooses one sequence for each cluster is then compiled to facilitate a
fast but sensitive analysis of metagenomic samples with modest computational
resources. Details are given in Sect. 2. Further, SPARSE implements a proba-
bilistic model for sampling reads from a metagenomic sample, which extends the
model described in Sigma [1] by weighting each read with its probability to stem
from a genome not included in the reference database, hence considered as an
unknown source. Details are given in Sect. 3.

We evaluate SPARSE on three simulated datasets published previously [14,
21,23]. Comparing SPARSE to several other taxonomic binning software in these
simulations shows its improved precision and sensitivity for assignments on the
species-level or even strain-level. We further evaluate SPARSE on three ancient
metagenomic datasets, demonstrating the application of SPARSE for ancient
pathogen screening. For all three datasets, SPARSE is able to correctly iden-
tify small amounts of ancient pathogens in the metagenomic samples that have
subsequently been confirmed by additional sequencing in the respective studies.

2 Database Indexing

2.1 Background

Average Nucleotide Identity. To catalog strain-level genomic variations within
an evolutionary context, we need to reconcile all the references in a database into
comprehensive classifications. Since its first publication, the average nucleotide
identity (ANI) in the conserved regions of genomes has been widely used for such
a purpose [10]. In particular, 95–96% ANI roughly corresponds to a 70% DNA-
DNA hybridization value, which has been used for ∼50 years as the definition
for prokaryotic species.

Marakeby et al. [13] proposed a hierarchical clustering of individual genomes
based on multiple levels of ANIs. Extending from the 95% ANI species cut-off,
it allows the classification of further taxonomic levels from superkingdoms to
clones. Applying such a clustering to large databases of reference genomes allows
to identify clusters of overrepresented species and hence to reduce redundancy
but not diversity in the database, depending the ANI levels chosen. However,
the standard ANI computation adopts BLASTn [2] to align conserved regions
between genomes, which is intractable to catalog large databases of reference
genomes. We therefore rely on an approximation of the ANI by MASH [18] to
speed-up comparisons.



228 Z. Zhou et al.

ANI Approximation. MASH uses the MinHash dimensionality-reduction tech-
nique to reduce large genomes into compressed sketches. A sketch is based on
a hash function applied to a kmer representation of a genome, and compres-
sion is achieved by only including the s smallest hash values of all kmers in the
genome in the sketch. Comparing the sketches of two genomes, MASH defines a
distance measure under a simple Poisson process of random site mutation that
approximates ANI values as shown in [18].

Parameter Estimation. Ondov et al. [18] already used MASH to group all
genomes in RefSeq into ANI 95% clusters. We adopted slightly different param-
eters and extended it to an incremental, hierarchical clustering system. The
accuracy of the MASH distance approximation is determined by both the kmer
length k and the sketch size s. Increasing k can reduce the random collisions in
the comparison but also increase the uncertainty of the approximation. We can
determine k according to equation (2) in [18]:

k = �log|Σ|(n(1 − q)/q)�,

where Σ is the set of all four possible nucleotides {A,C,G, T}, n is the total
number of nucleotides and q is the allowed probability of a random kmer to be
found in a dataset. Given n = 1 terabase-pairs (Tbp; current size of RefSeq)
and q = 0.05, which allows a 5% chance for a random k-mer to be present in a
1 Tbp database, we obtain a desired kmer size k = 23. Increasing the sketch size
s will improve the accuracy of the approximation, but will also increase the run
time linearly. We chose s = 4000 such that for 99.9% of comparisons that have
a MASH distance of 0.05, the actual ANI values fall between 94.5–95.5%.

2.2 SPARSE Reference Database

We combine the hierarchical clustering of several ANI levels with the MASH
distance computation to generate a representation of the current RefSeq [17]
database. The construction of the SPARSE reference database is parallelized
and incremental, thus the database can be easily updated with new genomes
without a complete reconstruction.

Hierarchical Clustering. In order to cluster genomes in different levels, we defined
8 different ANI levels L = [0.9, 0.95, 0.98, 0.99, 0.995, 0.998, 0.999, 0.9995] as pro-
posed in [13], in which the genetic distances of two sequential levels differ by ∼2
fold. The first four ANI levels differentiate strains of different species, or major
populations within a species. The latter four levels give fine-grained resolutions
for intra-species genetic diversities, which can be used to construct clade-specific
databases for specific bacteria. In Sect. 4, we show that the first four clustering
levels are sufficient for taxonomic binning down to the strain level.

The SPARSE database D(S,L,K) is extended incrementally as shown in
Algorithm 1, with S listing the sketches of all genomes already in the database
and K being a hash containing the cluster assignments at each level l ∈ L for
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each key s ∈ S. A new genome is integrated by finding another genome in the
database with the lowest distance using MASH, and clustering it with its nearest
neighbour sn depending on the ANI.

Algorithm 1. Incremental SPARSE database clustering
Input: SPARSE database D(S,L,K), list of new genomes G
Output: Extended SPARSE database D′(S,L,K)
1: for each genome g ∈ G do
2: sg = MashSketch(g)
3: sn = argmins∈SMashDistance(sg, s)
4: for 0 ≤ i ≤ |L| − 1] do
5: if L[i] ≤ 1 − MashDistance(sg, sn) then
6: Push K[sn][i] to K[sg]
7: else
8: Push |S| to K[sg]
9: Push sg to S

In the SPARSE implementation, we parallelized the database construction
by inserting batches of genomes at once and parallelizing sketch and distance
computation, thereby scaling to the complexity of the problem. After being
added to the database, the cluster assignment for a genome is fixed and never
redefined. Therefore, the insertion order of genomes can influence the database
structure. Here we utilize prior knowledge from the community, so the SPARSE
database is initialized first with all gold standard complete genomes in RefSeq,
followed by representative and curated genomes.

Representative Database. To avoid mapping metagenomic reads to redundant
genomes within the database, we construct a subset of genome representatives
for read assignment, similar to [9]. The representative database consists of the
first genome from each cluster defined by ANI 99%. This representative database
is sufficient for routine taxonomic profiling and pathogen identification. A repre-
sentative database with lower ANI values (i.e., 98% or 95%) does not recover the
genetic diversities of many bacterial species and thus reduces the performance
of the read-sampling model (described below). On the other hand, adding more
genomes that represent finer ANI levels increases the size of the database and
introduces an over-representation of references to certain pathogens. Representa-
tive databases based off these thresholds have been provided for users performing
bespoke analysis of a specific species.

The representative database is then indexed using bowtie2-build [11] with
standard parameters. SPARSE indexes 20, 850 bacterial representative genomes
in ∼4 h using 20 computer processes. Representative databases of other ANI
levels or clade-specific databases can also be built by altering the parameters.
Furthermore, traditional read mapping tools such as bowtie2 [11] show reduced
sensitivity for divergent reads. This is not a problem for many bacterial species,
especially bacterial pathogens, because these organisms have been selectively
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sequenced. However, fewer reference genomes are available for environmental
bacteria and eukarya. In order to map reads from such sources to their distantly
related references, SPARSE also provides an option to use MALT [5], which is
slower than bowtie2 and needs extensive computing memory, but can efficiently
align reads onto references with <90% similarity.

3 Metagenomic Read Sampling

Given read mappings to the representative databases as input, we adapt a proba-
bilistic model reconstructing the process of sampling reads from a metagenomic
sample to assign reads onto reference genomes. We extend the model imple-
mented in Sigma [1] by also considering that reads aligned to a genome in the
reference database could still be originating from an unknown source, thus avoid-
ing to overestimate the number of genomes present in the sample. We introduce a
weighting for each read reflecting the probability to be sampled from an unknown
genome, and show in Sect. 4 how this improves the precision of taxonomic assign-
ments.

Let E denote the set of both known and potentially unknown genomes in a
metagenomic sample, and the set of reference genomes included in the SPARSE
database is a subset G ∈ E. Let Pr(ri|E) be the probability of sampling a
random read ri from any possible source, we have

Pr(ri | E) = Pr(ri, G | E)Pr(ri | G).

We denote wi = Pr(ri, G|E) as the sampling probability, indicating the proba-
bility that ri is sampled from any known reference genome in G. On the other
hand, Pr(ri | G) is the probability of generating ri given G and can be further
separated as

Pr(ri | G) =
∑

gj∈G

Pr(ri | gj)Pr(gj | G),

where Pr(gj |G) is the probability that a genome gj ∈ G was chosen to generate
the read, and Pr(ri|gj) is the probability of obtaining read ri from gj . As in
Sigma, given a uniform mismatch probability σ = 0.05, Pr(ri|gj) can be directly
calculated from the alignment of ri to genome gi with x mismatches, and can
be stored in a matrix Q, such that

Qi,j = Pr(ri | gj) = σx(1 − σ)l−x,

where l is the length of read ri. We next describe how the sampling probability
wi is inferred, by giving a weight to each read that indicates the probability
of being sampled from a known reference genome. Reads with a low weight do
not influence the optimization process used to infer the optimal Pr(gj |G) for a
complete metagenomic read dataset.



Accurate Reconstruction of Microbial Strains 231

3.1 SPARSE Sampling Probability

We model two scenarios that can lead to non-specific mappings of foreign reads.

(1) Since there is no systematic way of masking all mobile elements in a refer-
ence sequence, we evaluate the probability of a read being drawn from the
core genome. We assume that highly conserved regions are part of the core
genome, which has been vertically inherited, whereas variable regions likely
represent horizontal gene transfers (HGTs). We denote this HGT probability
as mi.

(2) We evaluate the probability of a read originating from an Ultra-Conserved
Element (UCE), by comparing the read depths of the aligned genome frag-
ments with other regions in the genome. UCEs are so highly conserved that
additional reads from divergent genomes are likely to map on to them, which
results in a higher read depth than other regions. We denote this UCE prob-
ability as ni. Combining both cases as a joint probability, we infer a weight
wi for each read as

wi = mini.

HGT Probability. Given any cluster t in ANI level k that consists of u references,
a read ri can be assigned to either the core genome gc or accessory genome ga

of this cluster. Given the number of references v ⊆ u the read aligns to, we can
formulate the probability of the read originating from the core genome as

Prt(gc|ri) =
Prt(ri|gc)Pr(gc)

Pr(ri)
=

Prt(ri|gc)Pr(gc)
Prt(ri|gc)Pr(gc) + Prt(ri|ga)(1 − Pr(gc))

,

P rt(ri|gc) = pv
c (1−pc)u−v, P rt(ri|ga) = pv

a(1 − pa)u−v

(1)

where Pr(gc) is the prior probability of any read originating from a core genomic
region, and pc and pa are the respective probabilities for core genomic fragments
or accessory genomic fragments. Default prior probabilities in SPARSE are given
in Table 1. Furthermore, a read can align to multiple clusters in the same ANI
level k, so we average the probabilities of all such clusters for each read weighted
by Q inferred from the read alignment:

Prk(gc|ri) =
∑

t maxgj∈t Qi,jPrt(gc|ri)∑
t maxgj∈t Qi,j

.

Finally, we consider three different ANI levels for the core genome analysis (by
default 90%, 95% and 98%), assigning a lower value for mi if the read does not
map to the core genome at any of these ANI levels:

mi = 1 −
∏

k

(
1 − Prk(gc|ri)

)
. (2)
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Default values for the prior probabilities were inferred from a published study
of core genes across multiple bacterial species [3]. We account for 1% of random
deletions of core genes, which gives pc = 0.99. We also observed that <10%
of all genes are core genes in bacterial species represented by many genomes.
This results in

∑
Pr(gc) < 0.1 over all three ANI levels. We arbitrarily assigned

a higher Pr(gc) for levels with lower ANI, because a sequence fragment is less
likely to be part of a mobile element if it is coincidently present in more divergent
genomes. Finally, ∼40% of the genes in a random genome are core genes. This
gives mi ≈ 0.6 when v = 1 and u = 1, which can be used to find empirical values
of pa via Eqs. 1 and 2.

Table 1. Default prior probabilities for three ANI levels, values inferred from [3].

ANI Pr(gc) pc pa

90% 0.05 0.99 0.1

95% 0.02 0.99 0.2

98% 0.01 0.99 0.5

UCE Probability. In order to compare the read coverage of each fragment in
a reference genome gj with other fragments of the same genome, we split its
sequence into k consecutive fragments fj,k using two uniform arbitrary lengths,
487 bps and 2000 bps. Here 487 is used because it is a prime, such that the
ends of two fragments overlap only once per Mbp. Then the read depth in each
fragment, dk, follows a Poisson distribution with parameter λ as the average
number of reads per region and probability mass function f(k, λ). Because of
the complexity of the read alignments, we relax the probability of read depth in
each fragment such that a wide range of read depths retain high probabilities:

Pr(ri|fj,k) =

⎧
⎪⎪⎨

⎪⎪⎩

f(dk,λ/
√

2)

f(λ/
√

2,λ/
√

2)
for dk < λ/

√
2,

1 for λ/
√

2 ≤ dk ≤ √
2λ,

f(dk,
√

2λ)

f(
√

2λ,
√

2λ)
for

√
2λ < dk,

Since a read can again align to multiple genomes gj , we compute the UCE
probability of a read as a weighted average of all its alignments. If a read aligns
multiple times to the same genome gj with equal alignment score, we choose one
fragment randomly. The UCE probability is then defined as

ni =

∑
j(Qi,jPr(ri|fj,k))

∑
j Qi,j

.

Thus a lower value of ni is the result from a deviation of the general coverage at
the read position in comparison to the average coverage in the genome, indicating
that the read is likely mapping to an ultra-conserved region in the genome.
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3.2 Optimization Problem

Knowing the weight wi for all reads ri in a whole metagenomic read set R, the
task is then simplified to finding optimal Pr(gj |G) values that maximize the
probability of the whole read set:

max Pr(R|E) = max
∏

ri∈R

Pr(ri | E) = max
∏

ri∈R

(
wi

∑

gj∈G

Qi,jPr(gj |G)
)
.

The optimization problem can be solved by a non-linear programing (NLP)
method. In SPARSE, we rely on a modified version of the function provided in
Sigma [1].

After optimizing Pr(gj |G), we finally assign a read to a potential reference
by checking the following ratio of the computed probabilities:

P (ri, gj) =
Pr(ri, gj |G)
Pr(ri, G)

=
Qi,j ∗ Pr(gj |G)∑

gj∈G Qi,j ∗ Pr(gj |G)
. (3)

We may assign a read to multiple references, as long as P (ri,gj)
maxg P (ri,g) ≥ 0.1. This

allows a better abundance estimation for multiple strains from the same species,
in which case a read cannot be assigned unambiguously to a single reference.

Further, let ri ∈ B ⊂ R be all reads assigned to gj . For a read ri of
length l with x mismatches in the alignment to its assigned reference, we have a
nucleotide similarity of si,j = l−x

l . The weighted average similarity s̄B,j can be
calculated as

s̄B,j =

∑
ri∈B

si,j wi P (ri, gj)
∑

ri∈B

wi P (ri, gj)
.

Potentially, reads assigned to a single reference could still originate from sev-
eral co-existing genomes, with varying degrees of diversity, in the metagenome.
We can identify reads from more divergent sources by comparing si,j to their
average similarity. If all reads assigned to a single reference originate from the
same genome in the metagenome, we assume that the similarity of most reads
complies with the average similarity over all reads. However, reads originating
from very conserved regions show higher similarity than the average and pro-
vide a sampling bias. On the other hand, reads originating from different more
divergent genomes, will show lower similarity which can be used to avoid over-
estimating the abundance of each cluster. Therefore we compute the expected
average nucleotide identity s′ for ri as

s′
i,j = min (si,j , sB,j).

This similarity reflects the ANI between each read and the assigned reference
and, as described in the next section, can be used to compute the abundance of
each cluster in the metagenomic sample.
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3.3 ANI Cluster Abundances

The equation miniP (ri, gj) describes the probability, for each read ri ∈ R, to be
drawn from a region in reference gj that is part of the core genome (mi) and has
even read depth in comparison to the whole chromosome (ni). In summary for all
reads assigned to gj ,

∑
i mini ∗ P (ri, gj) gives the frequency of reads originating

from the core genome of gj . However, the desired read abundance for a reference
gj needs to also include reads from the accessory genome. Such reads have been
previously suppressed when computing mi. If we assume that all species have the
same proportion of core genome, the relative abundances of their core genomes
will be equal to the relative abundance of their whole genomes. However, since
this is not the case [3], we need to normalize each mi computed previously. Given
P (ri, gj) from Eq. 3, for any ANI 90% cluster t, we normalize mi for a read ri as

m′
i =

∑
gj∈t

∑
rk∈R,

s′
k,j≥0.9

P (rk, gj)

∑
gj∈t

∑
rk∈R,

s′
k,j≥0.9

mk P (rk, gj)
∗ mi.

Finally, we assign reads into clusters of all ANI levels according to the references
contained in the cluster. For each cluster, we only assign reads if its similarity
complies with the ANI level l of the cluster, i. e. s′

i, j ≥ l.
Thus the abundance of a cluster tl is computed as the sum of all read abun-

dances assigned to all genomes in the cluster weighted by their probability to
originate from an unknown genome. Therefore clusters containing only reads
with small ni and mi probabilities will receive a low abundance value even if
many reads are assigned to it.

atl =
∑

gj∈tl

∑

ri∈R
s′
i,j≥l

m′
i ni P (ri, gj).

3.4 Taxonomic Labels for ANI Clusters

We finally assign standard taxonomic designations to all clusters at all ANI
levels, in order to interpret their biological meaning. Here we rely on a majority
vote of all genomes in a cluster. However, the taxonomic levels are restricted to
certain ANI levels. For example, species are distinguished at the ANI 95% level,
and a species designation is therefore inappropriate for an ANI 90% cluster.
Similarly, the taxonomic label for an ANI 95% cluster should not include any
subspecies designations.

4 Evaluation

4.1 Representative Database

We ran SPARSE to index the RefSeq database that consists of 101, 680 complete
or draft genomes into 28, 732 clusters at ANI 99% level, which were further
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grouped into 18, 205 clusters at 95% ANI level, as shown in Fig. 1. Grouping
all the genomes according to their species, the resulting representative database
is much more evenly distributed, with a Pielou’s evenness [19] of J ′ = 0.9,
comparing to J ′ = 0.51 for the whole RefSeq database. Over-representation
of pathogenic organisms in the RefSeq database are largely due to repeated
sequencing of nearly identical genomes rather than sequencing of intra-species
genetic diversities. In particular, nearly half of the genomes in RefSeq are from
the top 10 most sequenced bacterial species, which are all human pathogens.
All these genomes were grouped into 615 clusters at ANI 99% level, which gives
a 65-fold reduction of the data indexed for these species. With this strategy,
the whole RefSeq database was downloaded and assigned into ANI levels in
∼23 h, using 20 processes on a standalone server. Further insertion of 1, 000 new
genomes (∼5 MB) into an already established database takes ∼15mins.

Bacteria Virus Archaea Eukaryota

H. pylori
V. parahaemolyticus

NCBI RefSeq
(101,680)

ANI99 clusters
(28,732)

ANI95 clusters
(18,205)

S. pneumoniae

S. aureus

S. enterica

E. coli

M. 
tuberculosis

Fig. 1. Hierarchical clustering of 101, 680 genomes in NCBI RefSeq database (Aug.
2017) into 18, 205 ANI 95% clusters using SPARSE. Each rectangle represents such a
cluster at ANI 95% level, with its area relative to the total number of genomes (top)
or clusters at ANI 99% (bottom).

4.2 Simulated Data

We ran SPARSE on three recent simulated datasets (Sczyrba et al. [23], McIn-
tyre et al. [14] and Quince et al. [21]). For a fair comparison, the analyses for
all datasets were based on a database built from NCBI RefSeq and taxonomy
databases dated 22th June, 2015, which is the deadline for the comparison in [23]
and also pre-dates the other two comparisons. We evaluated the performance of
SPARSE as described in the respective papers for the read-level taxonomic bin-
ners, adopting the results for the other compared methods directly from the
studies. We additionally included Sigma using the same database as SPARSE
in the comparison. We calculated sensitivity and precision based on the number
of true-positives (TP; correctly assigned reads), false-positives (FP; incorrectly
assigned reads), and false-negatives (FN; unassigned reads).
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Fig. 2. Performances of SPARSE in simulated published datasets. The performance
of all the tools in A and B, except for SPARSE and Sigma, are obtained from
the respective publications [14,23]. SPARSE was run in parallel using two different
databases. [2015] uses database built from RefSeq at 2015, whereas [2017] uses up-
to-date database. (A) All the simulated reads in McIntyre et al. [14] were derived
from published genomes. (B) The Sczyrba et al. [23] used unpublished genomes for
read simulations. C+D) Strain-level identification using the mocked E. coli datasets as
published in [21]. (C) Left: The distance-based species tree forE. coli for 45 ANI 99%
representative genomes plus the five genomes used in [21] for mocked reads. The four
largest ANI 98% clusters in E. coli are highlighted with colors. Right: Each column
shows one of the 16 mocked samples. The true relative abundances of E. coli strains
in samples (blue) and the relative abundances of predicted strains (red) in samples are
shown as colored squares. (D) Comparison of true E. coli strain abundances versus
SPARSE predictions. The dashed line indicates the linear regression of the two values,
with R2 = 0.9948 and p < 2.2e−16. (Color figure online)

All simulated reads in the McIntyre et al. [14] study were generated from pub-
lished complete genomes. This dataset is suitable for comparing the completeness
of the databases, as well as the sensitivity of the read mapping approaches in
different tools. Both SPARSE and Sigma were run on 18 samples that have read-
level taxonomic labels. SPARSE binned all the samples in ∼10 hours with 20
processes. The precision and sensitivity of both tools in addition to six binning
tools from [14] are summarized in Fig. 2A. As expected, all tools reached a high
precision of >97%, but differed in their sensitivity. Benefiting from the represen-
tative database, SPARSE and Sigma assigned the highest numbers of reads into
correct species. The difference between the two methods is due to their differ-
ent strategies in the modeling, where Sigma assigned all reads to their possible
references, whereas SPARSE filtered out unreliable mappings. An independent
run of SPARSE using the latest RefSeq database (Aug. 2017) assigned slightly
more reads into species, but does not improve precision. This database consists
of 20,850 representative genomes, which is ∼2 fold the number of representatives
(9,707) in RefSeq 2015. The run time of SPARSE increases with this database to
∼24 h, which is also ∼2 times slower as running SPARSE against RefSeq 2015.

The datasets in Sczyrba et al. [23] are much more challenging, because all the
reads were generated from sequencing of environmental isolates, many of which
do not have closely related references in the 2015 database. Furthermore, many
reads do not have a known microbial species label, because they are not similar



Accurate Reconstruction of Microbial Strains 237

to any species in SILVA [20], which was used as the gold standard in this study.
We ran both Sigma and SPARSE on the medium complexity datasets, and com-
pared the results with the other methods (see Fig. 2f in [23]) for the recovery
of microbial species (Fig. 2B). Using 80 processes, SPARSE ran through all four
datasets in ∼40 h. All the taxonomic binners published in [23] obtained an aver-
age precision of <30% at species level, except for taxator-tk [4] with a precision
of 70% along with the lowest sensitivity (∼1.25%). The performance of Sigma is
comparable to other binning tools, whereas SPARSE obtained an exceptionally
high precision of ∼85% while still maintaining a sensitivity of ∼23%. Many incor-
rect taxonomic bins predicted in Sigma were suppressed in SPARSE, because
they have low sampling probability wi to any of the existing references. Again,
SPARSE was also run independently against the database built Aug. 2017. The
runs completed in 4 days and recovered 63% of the species in the CAMI median
datasets, with an average precision of 97%.

Both benchmarks evaluate the performances of taxonomic binnings on or
above species level, but give no resolution in intra-species diversity. DES-
MAN [21] allows reference-free recovery of strain-level variations based on uneven
read depths of different strains across multiple samples. It has been compared
with two other strain-level binning methods using mock E. coli samples [21].
Applying SPARSE to the same 20 genome mocks, we recovered 50/51 E. coli
strains in all 16 samples without any additional strains (false positives), as shown
in Fig. 2C. The only strain that was not recovered by SPARSE is 2011C-3493
in the 12th sample (Sample733 in [21]), which accounts for only ∼0.03% of all
E. coli reads in the sample. We also obtained an almost exact correspondence
between the relative abundances of the strains and the predictions (Fig. 2D). A
linear regression of real abundances and the predictions gives an R2 = 0.9948
and p < 2.2e−16.

4.3 Ancient Metagenomes

We further evaluated SPARSE and five additional metagenomic tools on three
real sets of ancient DNA reads (Mycobacterium tuberculosis from [7], Yersinia
pestis from [22] and Helicobacter pylori from [12]) and summarised their results
in Table 2. For all samples, the presence of the targeted pathogen, although
in very low frequencies (≤0.02%), has been confirmed by additional sequenc-
ing in the respective publications. MIDAS [16] failed in all three samples and
MetaPhlan2 [24] managed to identify H. pylori but failed in the other two sam-
ples. The results for these two marker-based approaches are consistent with the
simulations discussed earlier. Kraken [25] and One Codex [15] are both based
on kmer-based taxonomic assignment, but yielded different results. Kraken only
identified H. pylori, whereas One Codex got positive results in all three samples.
However both methods incurred a high number of false positives. For exam-
ple, Kraken reported Salmonella enterica and Vibrio cholerae in the Iceman
sample, whereas One Codex predicted two Yersiniae. All these predictions are
inconsistent with results from other tools and analyses presented in the pub-
lications. Sigma identified two of three pathogens but inaccurately predicted



238 Z. Zhou et al.

V. parahaemolyticus, which is normally associated with seafood, for the human
remains from the Bronze Age. SPARSE successfully identified all three targeted
species without any additional suspicious pathogen, which highlights its appli-
cation to archaeological samples.

It took SPARSE ∼1 and ∼2.5 h to profile the M. tuberculosis and Y. pestis
datasets respectively, and over 16 h for the H. pylori dataset, using 20 processes
in a standalone server. The run-time for Sigma are approximately 5-fold higher
than SPARSE in all the datasets. For both tools, the read alignment is the main
limiting factor and accounted for over ∼95% of their run-time. In contract, the
other binning tools listed in the table finished within 10 min on all the datasets,
due to their different ways of handling reads.

Table 2. Summary of results for different metagenomic binning tools on real archaeo-
logical datasets identifying ancient pathogens.

ERR650978 [7]
1794AD Hungarian
1.7M reads
MT 0.02%

ERR1094783 [12]
5300-yr-old Iceman
15M reads
H. pylori 0.01%

ERR1018927 [22]
Bronze Age human
1.6M reads
Y. pestis 0.01%

SPARSE + + +

Sigma + − +
(VP)

Kraken −
(CD,ML)

+
(SE,VC)

−

One Codex +
(MA,SA)

+
(YE,YP)

+

MetaPhlan − + −
MIDAS − − −

a +/− for the identification of the pathogen. Abbreviations for suspicious pre-
dictions in bracket (CD: Corynebacterium diphtheriae; MA: M. avium; ML: M.
leprae; MT: M. tuberculosis; SA: Staphylococcus aureus; SE: S. enterica; VC: V.
cholerae; VP: V. parahaemolyticus; YE: Y. enterocolitica; YP: Y. pseudotubercu-
losis).

5 Conclusion

The genetic signatures of specific microbes in metagenomic data, such as human
pathogens, are often buried behind the majority of reads from genetically diverse
environmental organisms. This is exemplified in the metagenomic sequencing of
archaeological samples. Current taxonomic assignment methods compare the
metagenomic data with databases that do not fully capture the diversity of
microbial genomes. Among these tools, the marker-based taxonomic profilers fail
to identify species at low abundances whereas whole genome based taxonomic
binners give inaccurate predictions due to non-specific read mappings on ultra-
conserved or horizontally transferred elements.
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SPARSE indexes existing reference genomes into a comprehensive database
with automatic hierarchical clusterings of related organisms. This database is
used as a reference for mapping of metagenomic reads. SPARSE penalizes unre-
liable mappings of reads from unknown sources, and integrates all remaining
into a probabilistic model, in which reads are assigned to either an existing ref-
erence or unknown sources. In both simulations and real archaeological data,
SPARSE outperforms all existing methods, especially in the precision of species-
level assignment. Furthermore, SPARSE manages to identify multiple strains of
the same species even when they co-exist in the same sample. In contrast to
many existing tools, SPARSE aligns metagenomic reads onto a huge representa-
tive database. This database, albeit being a compression of the even larger Ref-
Seq database, is still much larger than many existing databases. As a result, the
run-time of SPARSE is limited by the performance of its adopted read aligner,
which could be improved in the future development.
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Extended Abstract

Whole Genome Sequencing is increasingly used to identify Mendelian variants
in clinical pipelines. These pipelines focus on single nucleotide variants (SNVs)
and also structural variants, while ignoring more complex repeat sequence vari-
ants. We consider the problem of genotyping Variable Number Tandem Repeats
(VNTRs), composed of inexact tandem duplications of short (6−100 bp) repeat-
ing units. VNTRs span 3% of the human genome, are frequently present in
coding regions, and have been implicated in multiple Mendelian disorders (e.g.,
Medullary cystic kidney disease, Myoclonus epilepsy, and FSHD) and complex
disorders such as bipolar disorder. In some cases, the disease associated vari-
ants correspond to point mutations in the VNTR sequence while in other cases,
changes in the number of tandem repeats (RU count) show a statistical asso-
ciation (or causal relationship) with disease risk. While existing tools are able
to recognize VNTR carrying sequence, genotyping VNTRs (determining repeat
unit count and sequence variation) from whole genome sequenced reads remains
challenging. We describe a method, adVNTR, that models the problems of RU
counting and mutation detection using HMMs trained for each target VNTR.
adVNTR models can be developed for short-read (Illumina) and single molecule
(PacBio) whole genome and exome sequencing. It has three components: (i)
HMM training module for model parameter estimation; (ii) read recruitment;
and, (iii) estimating RU counts and variant detection. We compared read recruit-
ment with alignment-based methods. The results show that while adVNTR
works well for a range of RU counts, other mapping tools work well only when
the simulated RU count matches the reference RU count. We performed a long
range (LR)PCR experiment on the individual NA12878 to assess the accuracy
of the adVNTR genotypes. To test performance of counting of Repeat Units on
real data where the true VNTR genotype is not known, we confirmed our results
by checking for Mendelian inheritance consistency at 865 VNTRs in two trios.
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For short VNTRs, adVNTR can be an effective tool for larger population-scale
studies of VNTR genotypes using WGS data replacing labor intensive gel elec-
trophoresis. We found the RU count frequencies for two disease-linked VNTRs in
GP1BA and MAOA genes, using 150 PCR-free WGS data. The 2R/3R genotypes
in GP1BA are associated with Aspirin Treatment failure for stroke prevention.
Notably, our results suggest that the 2R genotype is absent in African popula-
tions suggesting that this shorter allele arose after the out of Africa transition.
adVNTR is available at https://github.com/mehrdadbakhtiari/adVNTR.
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Background

Structure determination with cryoEM involves reconstructing a 3D molecule
from 2D projections. This process often requires tens to hundreds of thousands
of experimental projections, or particles. Locating these particles in cryoEM
micrographs, referred to as particle picking, is a major bottleneck in the cur-
rent protein structure determination pipeline. This pipeline generally consists
of sample and EM grid preparation, imaging, particle picking, and eventually
structure determination. Labeling a sufficient number of particles to determine
a high resolution structure can require months of effort – even with the use of
existing methods designed to automate the process. Limitations of these tools
include high false positive rates, requiring many hand-labeled training examples,
and poor performance on non-globular proteins.

In order to better automate particle picking, and thus accelerate structure
determination, we newly frame the particle picking problem as an instance of
positive-unlabeled classification. In our framework, for a set of micrographs con-
taining particles of interest with a small number labeled for training, we learn a
convolutional neural network (CNN) to classify particles from background using
a novel generalized-expectation criteria [1] to regularize the model’s posterior
over the unlabeled micrograph regions. This advance allows us to achieve state-
of-the-art particle detection results with minimal hand-labeling required.
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Methods

We develop Topaz, the first particle picking pipeline to use CNNs trained using
only positive and unlabeled examples and GE-binomial, a general objective func-
tion for learning classifier parameters from positive and unlabeled data. The GE-
binomial objective penalizes the negative log-likelihood of the labeled data points
while regularizing the classifier’s posterior over the unlabeled data to match a
binomial distribution prior on the number of unlabeled positives. Denoting the
set of labeled positive data points by P , the probabilistic classifier as g, the clas-
sifier’s posterior over the number of unlabeled positives as q, and the binomial
prior as p, the GE-binomial objective function is: − E

x∈P
[log g(x)] + KL(q ‖ p),

where KL is the Kullback-Leibler divergence.
In the Topaz pipeline, CNN classifiers are fit to labeled particles and the

remaining unlabeled micrograph regions using minibatched stochastic gradient
descent to minimize the GE-binomial objective. Predicted particle coordinates
are next extracted by scoring each micrograph region with the trained classi-
fier and then using the non-maximum suppression algorithm to greedily select
candidate particle coordinates.

Results

We show that the Topaz pipeline is able to accurately detect particles when
trained with very few labeled example particles. On the EMPIAR-10096 cryoEM
data set [2], Topaz achieves 46% precision at 90% recall with only 1000 labeled
particles. In contrast, at the same recall level, EMAN2’s byRef method [3] only
reaches 33% precision with the same set of labeled particles – corresponding to
71% more false positives than Topaz. Remarkably, Topaz still achieves better
precision than EMAN2 at 90% recall with 1/10th and even 1/100th the num-
ber of labeled particles. At all numbers of labeled particles tested, we improve
substantially over EMAN2’s byRef method in area under the precision-recall
curve. The relative improvement in particle detection provided by Topaz is even
greater on a second, unpublished dataset provided by the Shapiro lab, contain-
ing stick-like particles with low signal-to-noise ratio. Furthermore, we show that
combining a convolutional decoder with the convolutional feature extractor and
classifier learned with GE-binomial to form a hybrid classifier+autoencoder can
further improve generalization when very few labeled data points are available.
Finally, we demonstrate that our GE-binomial objective function outperforms
other positive-unlabeled learning methods never before applied to particle pick-
ing. Topaz runs efficiently, training in hours and predicting in seconds with a
single consumer grade GPU. We expect Topaz to become an essential component
of single particle cryoEM analysis and our GE-binomial objective function to be
widely applicable to positive-unlabeled classification problems.
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Édouard Bonnet1, Pawe�l Rz ↪ażewski2, and Florian Sikora3(B)

1 Department of Computer Science, Middlesex University, London, UK
edouard.bonnet@dauphine.fr

2 Faculty of Mathematics and Information Science,
Warsaw University of Technology, Warsaw, Poland

p.rzazewski@mini.pw.edu.pl
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An RNA sequence is a word over an alphabet on four elements {A,C,G,U} called
bases. RNA sequences fold into secondary structures where some bases pair with
one another while others remain unpaired. Pseudoknot-free secondary structures
can be represented as well-parenthesized expressions with additional dots, where
pairs of matching parentheses symbolize paired bases and dots, unpaired bases.
The two fundamental problems in RNA algorithmic are to predict how sequences
fold within some model of energy and to design sequences of bases which will
fold into targeted secondary structures. Predicting how a given RNA sequence
folds into a pseudoknot-free secondary structure is known to be solvable in cubic
time since the eighties [15, 16] and in truly subcubic time by a recent result of
Bringmann et al. [3], whereas Lyngsø has shown it is NP-complete if pseudoknots
are allowed [13]. As a stark contrast, it is unknown whether or not designing a
given RNA secondary structure is a tractable task; this has been raised as a
challenging open question by several authors [2, 6, 7, 9, 11, 14]. Because of its
crucial importance in a number of fields such as pharmaceutical research and
biochemistry, there are dozens of heuristics and software libraries dedicated to
RNA secondary structure design [1, 2, 4, 5, 8]. It is therefore rather surprising
that the computational complexity of this central problem in bioinformatics has
been unsettled for decades.

As our main result we show that, in the simplest model of energy which is the
Watson-Crick model the design of secondary structures is NP-complete if one
adds natural constraints of the form: index i of the sequence has to be labeled by
base b. This negative result suggests that the same lower bound holds for more
realistic models of energy. It is noteworthy that the additional constraints are by
no means artificial: they are provided by all the RNA design pieces of software
and they do correspond to the actual practice (see for example the instances of
the EteRNA project [12]). Our reduction from a variant of 3-Sat has as main
ingredients: arches of parentheses of different widths, a linear order interleaving
variables and clauses, and an intended rematching strategy which increases the
number of pairs if and only if the three literals of a same clause are false. The
correctness of the construction is also quite intricate; it relies on the polynomial
c© Springer International Publishing AG, part of Springer Nature 2018
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algorithm for the design of saturated structures – secondary structures without
dots – by Haleš et al. [9, 10], counting arguments, and a concise case analysis.

We also show that a naive brute-force algorithm for RNA Design can be
improved by a careful structural analysis.
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9. Hales, J., Héliou, A., Manuch, J., Ponty, Y., Stacho, L.: Combinatorial RNA design:
designability and structure-approximating algorithm in watson-crick and nussinov-
jacobson energy models. Algorithmica 79(3), 835–856 (2017)
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) has been a key tool in dissecting inter-
cellular variation in biomedical sciences. A standard analysis for scRNA-seq data
is to visualize the cells in a low-dimensional (2D or 3D) space via methods such
as t-stochastic neighbor embedding (t-SNE) [1], where each cell is represented as
a dot and dots of cells with similar expression profiles are located close to each
other in space. Such visualization reveals the salient structure of the data in a
form that is easy for researchers to grasp and further analyze.

Recent advances in sequencing technologies has led to an exponential growth
in the number of cells sequenced in a study. For example, 10x Genomics recently
published a dataset of 1.3 million mouse neurons [2]. The emergence of such
mega-scale data poses new computational challenges before they can be widely
adopted, as many of the existing tools for scRNA-seq analysis (including t-SNE)
require prohibitive runtimes or computational resources for data of this size.

We introduce neural t-SNE (net-SNE), a scalable and generalizable method
for visualizing millions of cells for scRNA-seq analysis. net-SNE learns a high-
quality mapping function that takes an expression profile as input and outputs
a low-dimensional embedding in 2D or 3D for visualization. Unlike t-SNE, the
mapping function learned by net-SNE can be used to map previously unseen
cells. In addition to allowing fast visualization of datasets with millions of cells,
net-SNE enables novel workflows for single-cell genomics, where newly observed
cells are visualized in the context of existing datasets for translational analysis.

2 Methods

Our method (net-SNE) models the position of each cell in the visualization as
the output of a parameterized map evaluated at the given expression profile. We
use feedforward neural networks (NNs) to represent the embedding function,
drawing from the intuition that NNs have sufficient expressive capacity to find
high-quality maps similar to those typically uncovered by t-SNE. To optimize
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the NN parameters, net-SNE minimizes the same objective score optimized by t-
SNE via gradient descent. This choice of objective allows net-SNE to emulate the
behavior of t-SNE while newly achieving generalizability and scalability. Notably,
net-SNE is compatible with existing optimizations for t-SNE—our implementa-
tion of net-SNE incorporates an efficient variant of t-SNE based on Barnes-Hut
approximation [1]. We achieve further efficiency by employing stochastic opti-
mization techniques, where only a subset of cells are used to approximate each
parameter update. Such stochastic acceleration is newly enabled by net-SNE due
to the fact that parameters being optimized are shared across all cells.

3 Results

We observed that net-SNE learns an embedding that closely matches t-SNE on
13 scRNA-seq datasets with known clusters in terms of both visual quality and
clustering accuracy. Furthermore, when an entire cluster of cells was withheld
and placed onto the visualization after the fact, net-SNE accurately positioned
the held-out cells as a distinct cluster, despite not having seen any cells from the
missing cluster. To demonstrate fast visualization of mega-scale datasets, we also
pre-trained net-SNE on a random subset of 100K cells from the 10x Genomics
dataset and used the learned embedding to instantly visualize the entire dataset
in less than a minute. This approach obtained a higher quality map than t-SNE
with the default parameters, the latter of which took 13 h to finish. While the
pre-training of net-SNE took 3 h in our experiment, we note that a pre-trained
embedding may be readily available in certain use cases. We provide example
visualizations by net-SNE in Fig. 1.

PBMC68kZeiselKleinKolodziejczyk 10x Genomics

Fig. 1. Example 2D visualizations of single-cell RNA-seq datasets by net-SNE

Overall, our results demonstrate that net-SNE not only learns high quality
maps like t-SNE, but also gracefully generalizes to unseen cells. This allows net-
SNE to efficiently visualize mega-scale single-cell data by using a pre-trained
embedding from a subsampled or an existing dataset. Our work is widely appli-
cable to other data science domains with millions of data points to be visualized.
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The combination of massive parallel sequencing with high-throughput cell
biology technologies has given rise to single-cell Genomics. Similar to the
paradigm shift of the 90 s characterized by the first molecular profiles of tis-
sues, it is now possible to characterize molecular heterogeneities at the cellular
level (Saliba et al. 2014). The statistical characterization of heterogeneities in
single-cell expression data thus requires an appropriate model, since the tran-
scripts abundance is quantified for each cell using read counts. Hence, standard
methods based on Gaussian assumptions are likely to fail to catch the biologi-
cal variability of lowly expressed genes, and Poisson or Negative Binomial dis-
tributions constitute an appropriate framework (Chen et al. 2016). Moreover,
dropouts, either technical (due to sampling difficulties) or biological (no expres-
sion or stochastic transcriptional activity), constitute another major source of
variability in scRNA-seq (single-cell RNA-seq) data, which has motivated the
development of the so-called Zero-Inflated models (Kharchenko et al. 2014). A
standard and popular way of quantifying and visualizing the variability within a
dataset is dimension reduction, principal component analysis (PCA) being the
most widely used technique in practice. Model-based PCA (Collins et al. 2001)
offers the unique advantage to be adapted to the data distribution and to be
based on an appropriate metric, the Bregman divergence. It consists in speci-
fying the distribution of the data through a statistical model. A probabilistic
zero-inflated version of the Gaussian PCA was proposed by Pierson and Yau
(2015) in the context of single cell data analysis (the ZIFA method). However,
scRNA-seq data may be better analyzed by methods dedicated to count data
such as the Non-negative Matrix Factorization (Lee and Seung 1999, NMF) or
the Gamma-Poisson factor model (Cemgil 2009). However, none of the currently
available dimension reduction methods fully model single-cell expression data,
characterized by overdispered zero inflated counts (Zappia et al. 2017). Our
method is based on a probabilistic count matrix factorization (pCMF). We pro-
pose a dimension reduction method that is dedicated to over-dispersed counts
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with dropouts, in high dimension. Our factor model takes advantage of the Pois-
son Gamma representation to model counts from scRNA-seq data (Zappia et al.
2017). In particular, we use Gamma priors on the distribution of principal com-
ponents. We model dropouts with a Zero-Inflated Poisson distribution, and we
introduce sparsity in the model thanks to a spike-and-slab approach (Malsiner-
Walli and Wagner 2011) that is based on a two component sparsity-inducing prior
on loadings (Titsias and Lázaro-Gredilla 2011). The model is inferred using a
variational EM algorithm that scales favorably to data dimension, as compared
with Markov Chain Monte Carlo (MCMC) methods (Blei et al. 2017). Then we
propose a new criterion to assess the quality of fit of the model to the data,
as a percentage of explained deviance, because the standard variance reduction
that is used in PCA needs to be adapted to the new framework dedicated to
counts. We show that pCMF better catches the variability of simulated data and
experimental scRNA-seq datasets. Finally, pCMF is available in the form of a R
package available at https://gitlab.inria.fr/gdurif/pCMF.
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Motivation. Engineering artificial biological systems promises broad applica-
tions in synthetic biology, biotechnology and medicine. Here, the rational design
of multi-stable RNA molecules is especially powerful, since RNA can be gener-
ated with highly specific properties and programmable functions. In particular,
designing artificial riboswitches became popular due to their potential as ver-
satile biosensors [1]. Effective in-silico methods proved to greatly facilitate the
design approach and have tremendous impact on their cost and feasibility.

Statement of Problem. Most methods for computational design share a similar
overall strategy: one or several initial seed sequences are generated and optimized
subsequently. In this contribution we revisit the first main ingredient of (multi-
target) design methods, namely the sampling of sequences, which energetically
favor several given target structures at the same time. While previous multi-
target methods [4, 6] relied on ad-hoc sampling strategies, sampling seeds from
the uniform distribution was solved only recently [2, 3].

Algorithmic Contributions. We generalize Boltzmann sampling for RNA design,
which was recently shown powerful for single targets in IncaRNAtion [5], to
design for multiple structural targets. After showing that even uniform sampling
is #P-hard, we introduce the tree decomposition-based fixed parameter tractable
(FPT) sampling algorithm RNARedPrint. Finally, we combine our FPT stochas-
tic sampling algorithm with multi-dimensional Boltzmann sampling over distri-
butions controlled by expressive RNA energy models. We show that sampling t
sequences of length n for k target structures takes O(2d nk + t n k) time, where
d := min(w+ c+ 1, 2(w+ 1)), depending on the tree width w of the dependency
graph (covering all dependencies between sequence positions introduced by the
energy function) as well as the number c of connected components in the com-
patibility graph (covering the constraints enforcing canonical base pairings). Due
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to a constraint framework, RNARedPrint supports generic Boltzmann-weighted
sampling for arbitrary additive RNA energy models; this moreover enables tar-
geting specific free energies or GC-content, compare Fig. 1.

Empirical Results. We study general properties of the approach and generate bio-
logically relevant multi-target Boltzmann-weighted designs. Thereby, we observe
significant improvements over ad-hoc methods or even uniform sampling.

Extensibility of the Approach. The presented framework is designed to enable
even more general new possibilities for sequence generation in the field of RNA
sequence design by enforcing additional constraints, including more complex
sequence constraints, e.g. forbidden motifs in the designed sequences.

Fig. 1. General outline of RNARedPrint. From a set of target secondary structures (i),
base-pairs are merged (ii) into a compatibility graph (iii). Based on its tree decompo-
sition (iv), we compute the partition function, followed by a Boltzmann sampling of
valid sequences (v). An adaptive scheme learns weights to achieve targeted energies
and GC-content, leading to the production of suitable designs (vi).

Availability as free software: https://github.com/yannponty/RNARedPrint
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Introduction

The significant contribution of structural variants (e.g. deletion, insertion, and
inversion) to function, disease, and evolution is well reported. However, in many
cases, the mechanism by which these variants contribute to the phenotype is
not well understood. This is especially the case for studying non-coding struc-
tural variants and their potential biological impact. With the advent of high-
throughput chromosome conformation capture (Hi-C [1]) we have novel insights
into genome structure and its contribution to gene regulation. Using Hi-C data
we are able to study the genomic interactions, such as enhancer-promoter inter-
actions that are the main mechanism for gene regulation. The analysis of Hi-C
data has also provided evidence that genome folds into different compartments
and domains which guide the regions of the genome that can interact with each
other. One of these types of domains discovered is called topological associ-
ated domains (TADs) and has provided a novel understanding of how genome
structure contributes to regulation [2]. Recent studies reported structural vari-
ants (SVs) that disrupted the three-dimensional genome structure by fusing two
TADs, such that enhancers from one TAD interacted with genes from the other
TAD, could cause severe developmental disorders [3]. However, no method exists
for directly scoring and ranking structural variations based on their effect on the
three-dimensional structure such as the TAD disruption. In this paper, we for-
mally define TAD fusion and provide a combinatorial approach for assigning a
score to quantify the level of TAD fusion for each deletion denoted as TAD fusion
score.

Methods

Our goal is to develop a computational method that can provide a score for
deletions based on its level of modifying the 3D genomic structure and potential
of causing a TAD fusion. In our method, the input consists of a Hi-C contact
matrix of the genome with reference allele (i.e., without the deletion) and the
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coordinates of the deletion. The output is a score representing the number of new
genomic interactions made (i.e., TAD fusion score) as a result of the deletion.
For this paper, we are only considering deletions, however, this approach can be
extended to consider other SV types (e.g. translocations).

We propose a two-step framework for calculating the TAD fusion score: (i)
predicting a new Hi-C contact matrix G of the mutated chromosome (i.e. with
the deletion) given the Hi-C contact matrix H of a genome without the deletion
and the deletion coordinates as the inputs; (ii) comparing this predicted/new
Hi-C contact matrix G with the original Hi-C contact matrix H to estimate the
number of new interactions created as a result of that deletion. For the first step,
we extend the power law model (i.e. length-based model) by adding new param-
eters that represent the TAD structure. By that, all model parameter values can
be estimated by solving a linear programming. For the second step, we define
TAD fusion score as the expected number of additional genomic interactions
created as a result of the deletion. Here, the genomic interactions can be defined
by a simple step function or by a Bayesian formula.

Results

We show that our extended model gives a better prediction of the Hi-C con-
tact matrix than the (length-based) power law model. In addition, our method
can accurately score deletions which result in TAD fusion, and it outperforms
the approaches which use predicted TADs to overlay the deletion on them for
predicting TAD fusion. Furthermore, we show that our method correctly gives
higher scores to deletions reported to cause developmental disorders as a result of
disrupting genome structure in comparison to the deletions reported in the 1000
genomes project. Finally, we also show that deletions that cause TAD fusion are
rare and under negative selection in general population.

TAD fusion score is available at https://github.com/huynhvietlinh/
FusionScore.
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The problem of genome assembly is ultimately linked to the repeat charac-
terization problem, the compact representation of all repeat families in a genome
as a repeat graph [1]. Long read technologies have not made the repeat charac-
terization problem irrelevant. Instead, they have simply shifted the focus from
short repeats to longer repeats comparable in length to the median SMS read
size; e.g., Kamath et al. [2] analyzed many bacterial genomes that existing SMS
assemblers failed to assemble into a single contig. Since even bacterial (let alone,
eukaryotic) genomes have long repeats, SMS assemblers currently face the same
challenge that short read assemblers faced a decade ago, albeit at a different
scale of repeat lengths.

Most algorithms for assembling long error-prone reads use an overlap-layout-
consensus (OLC) approach that does not provide a repeat characterization [3,
4]. In contrast, de Bruijn graphs emerged as a popular approach for short read
assembly because they offered an elegant representation of all repeats in a
genome that reveals their mosaic structure. Most short read assemblers con-
struct the de Bruijn graph based on all k -mers in reads and further transform it
into an assembly graph using various graph simplification procedures. However,
in the case of SMS reads, the key assumption of the de Bruijn graph approach
(that most k -mers from the genome are preserved in multiple reads) does not
hold even for short k -mers, let alone for long k -mers (e.g., k = 1000). As a
result, various issues that have been addressed in short read assembly (e.g., how
to deal with the fragmented de Bruijn graph, how to transform it into an assem-
bly graph, etc.) remain largely unaddressed in the case of the de Bruijn graph
approach to SMS assemblies.

Here, we describe the Flye algorithm for constructing repeat graphs (which
have properties similar to de Bruijn graphs) from SMS reads. Flye is built on top
of the ABruijn assembler [5], which generates accurate overlapping contigs but
does not reveal the repeat structure of the genome. In contrast to ABruijn, Flye
initially generates inaccurate overlapping contigs (i.e., contigs with potential
assembly errors representing random walks on the true repeat graph) and com-
bines these initial contigs into an accurate assembly graph that encodes all pos-
sible assemblies consistent with the reads. Flye further resolves bridged repeats
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in the assembly graph thus constructing a new, less tangled assembly graph, and
finally outputs accurate final contigs formed by paths in this graph. Flye also
introduces a new algorithm that uses small differences between repeat copies to
resolve unbridged repeats that are not spanned by any reads. We benchmarked
Flye against several state-of-the-art SMS assemblers using various datasets and
demonstrated that it generates accurate assemblies while also providing insight
into how to plan additional experiments (e.g., using contact or optical maps)
to finish the assembly. Flye is freely available at http://github.com/fenderglass/
Flye.
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Introduction. Transferring biological knowledge between species is funda-
mental for many important problems in genetics. These problems range from
the molecular-level, such as predicting protein function or genetic interac-
tions [4], to the organism-level, such as predicting human disease models [5].
The most common approach researchers have taken is to use orthologs inferred
from DNA sequencing data. More recently, researchers have sought to expand
beyond sequence-based orthologs using high-throughput proteomics data under
the hypothesis that genes with similar topology in protein-protein interaction
(PPI) networks have similar functions. Many methods have been introduced to
infer homology across species (i.e. a node matching) from sequence similarity
and PPI networks, including network alignment [1]. More recently, Jacunski, et
al. [4] identified connectivity homologous gene pairs using a small set of features
derived from PPI networks. These prior works are focused on node matching and
constructing node feature vectors, but do not address the problem of embedding
genes from different species into a shared, general-purpose space.

Methods. We introduce a new algorithm, Homology Assessment across
Networks using Diffusion and Landmarks (HANDL), that leverages graph ker-
nels to embed nodes from two PPI networks into a biologically meaningful and
general-purpose vector space using network and sequence data.1 Kernels, par-
ticularly kernels that capture random walks and/or heat diffusion processes on
graphs, have been widely and successfully used for computing similarity between
nodes within biological networks [2].

The main computational challenge HANDL solves is relating network kernel
matrices from different species. Because the kernel matrices from networks of

1 An implementation of HANDL is available at https://github.com/lrgr/HANDL.
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Fig. 1. HANDL embeds nodes into a shared vector space.

different species have different dimensions, traditional kernel transfer learning
approaches (e.g. [3]) cannot be directly applied. We show a schematic of the
HANDL algorithm in Fig. 1. HANDL takes as input a source network, a target
network, and a set of landmarks shared between the networks to embed nodes
from the target species into the vector space of the source species. The inner-
product between embeddings gives HANDL similarity scores between nodes in
different species. As HANDL is a general algorithm, the landmarks and graph
kernel can be customized for particular applications. In this work, we use a
subset of homologs between the source and target species as landmarks and the
regularized Laplacian kernel specifically to capture protein functional similarity.

Results. We show that the human-mouse and baker’s-fission yeast cross-species
embeddings constructed by HANDL are biologically meaningful with three cross-
species tasks. First, we find that HANDL similarity scores are strongly correlated
with cross-species functional similarity, and that pairs with the highest HANDL
similarity scores are more functionally similar than pairs with the closest connec-
tivity homology profiles [4]. Next, we use the algorithm and data from McGary,
et al. [5] and HANDL-homologs (node pairs with high HANDL similarity scores)
to find new, novel human-mouse disease models (phenologs, i.e orthologous phe-
notypes) that are supported by biological literature. Finally, we show that node
vectors themselves are of more general use. We use HANDL to transfer knowl-
edge of synthetic lethal (SL) interactions in baker’s to fission yeast (and vice
versa). We compute embeddings for the source and target species then train a
support vector machine (SVM) only on embeddings of the source species. We
find that that the SVM also separates embeddings of the target species with
respect to SLs and non-SLs on previously unseen data.

These results show how HANDL can transfer knowledge of genetics between
humans and model organisms. We anticipate that HANDL can serve as the
foundation for more sophisticated approaches for transfer learning across species.
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1 Introduction

Protein kinase phosphorylation is one of the primary forms of post-translation
modification (PTM) that transduce cellular signals and regulate cellular pro-
cesses. Defective signal transductions, which are associated with protein phos-
phorylation, have been linked to many human diseases, such as cancer. Defining
the organization of the phosphorylation-based signaling network and, in partic-
ular, identifying kinase-specific substrates can help reveal the molecular mecha-
nism of the signaling network and understand their impacts on human diseases.

2 Methods

We present DeepSignal, a deep learning based method for predicting the sub-
strate specificity of kinase domains. Unlike most of the previous methods that
only focus on using substrate sequences to derive the kinases specificity, DeepSig-
nal takes into account the information in both kinase domain sequences and
substrate peptides, and translates a kinase sequences into its specificity profile
(e.g., a position-specific scoring matrix, PSSM). DeepSignal employs the Long
Short-TermMemory (LSTM) network, a deep learning architecture with memory
units, to process the kinase sequences with various lengths using a single model,
enabling the learning of universal knowledge across multiple kinase domains. Our
deep learning based method is able to automatically extract complex features
in kinase domain sequences that best explains the substrate specificity of this
kinase. For example, with the memory ability of LSTM, DeepSignal can exploit
and record the long and short range dependencies between residues spanning over
an arbitrary distance in the kinase domain, which is challenging for previous non-
deep learning methods of phosphosites prediction. In addition, DeepSignal can
transfer the knowledge from currently available kinase-substrate data to predict
phosphosites for new kinases, which is infeasible for many existing kinase-specific
methods.
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3 Results

We evaluated the ability of DeepSignal on predicting the substrate specificity
of kinase domains. Our method is able to achieve 0.875 AUROC (area under
the receiver operating characteristic curve) and 0.21 AUPRC (area under the
precision-recall curve) scores in a five-fold cross-validation, which is a substan-
tial improvement over previous methods GPS 2.0 [1] and NetPhorest [2]. To
test the generalization ability of our method, we further apply DeepSignal to
predict the binding specificity of SH2 domain (Fig. 1), another phosphorylation-
based signaling modular domain, on four high-throughput datasets. DeepSignal
significantly outperforms two SH2-peptide interaction methods (SMALI [3] and
SH2PepInt [4]) and one general protein-protein interaction method (PrePPI [5]).
Although trained on 80% of the data in the five-fold cross-validation, our method
still achieves higher or comparable AUROC scores when compared to a method
(MSM/D-PEM [6]) that was pre-trained on all the binding data of each dataset.
Overall, these results demonstrated the ability of DeepSignal on predicting the
binding specificity of phosphorylation-based signaling domains.

Fig. 1. Evaluation of prediciton performance on prediction of the binding between SH2
domains and phosphotyrosine peptides.

To study the impact of mutations on cancer, we used DeepSignal to con-
struct the signaling network using only the protein primary sequences of 16,254
proteins, including 307 kinase domains, 122 SH2 domains and 190,427 phos-
phoproteins across 18 cancer types. For each cancer type, we mapped all the
coding mutations from TCGA on the protein sequences. This resulted 6,286
mutations on kinase domains, 776 mutations on SH2 domains and 37,996 muta-
tions on phosphoproteins. We use DeepSignal to quantify the change of the bind-
ing specificity caused by the cancer mutations of a given kinase/SH2-peptide,
and predict a ranking list of single-nucleotide variants (SNV) that potentially
disrupt phosphosites. We found DeepSignal is more sensitive in detecting known
cancer genes related to signaling transduction than an existing statistical app-
roach [6]. DeepSignal can further discover new perturbed pathways related to
cancer including CTNNB1 pathway in UCEC, PTEN pathway in GBM and
SMAD4 pathway in LUAD.
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Cancer is a genetic disease that develops through a branched evolutionary
process. It is characterised by the emergence of genetically distinct subclones
through the random acquisition of mutations at the level of single-cells and
shifting prevalences at the subclone level through selective advantages purveyed
by driver mutations. This interplay creates complex mixtures of tumour cell pop-
ulations which exhibit different susceptibility to targeted cancer therapies and
are suspected to be the cause of treatment failure. Therefore it is of great inter-
est to obtain a better understanding of the evolutionary histories of individual
tumours and their subclonal composition.

Most of the current data on tumour genetics stems from short read bulk
sequencing data. While this type of data is characterised by low sequencing
noise and cost, it consists of aggregate measurements across a large number
of cells. It is therefore of limited use for the accurate detection of the distinct
cellular populations present in a tumour and the unambiguous inference of their
evolutionary relationships. Single-cell DNA sequencing instead provides data of
the highest resolution for studying intra-tumour heterogeneity and evolution,
but is characterised by higher sequencing costs and elevated noise rates.

As the strengths and weaknesses of bulk and single-cell sequencing data are
to a large extent complimentary with respect to phylogeny inference, using both
data types for a joint inference should improve our understanding of subclonal
tumour evolution over using each type of data alone. In this work, we develop
B-SCITE, the first computational approach that infers trees of tumour evolu-
tion from combined bulk and single-cell sequencing data. B-SCITE employs an
MCMC search scheme to find the mutation tree that maximizes the joint like-
lihood of both data types. The model accounts for typical sequencing biases
and artifacts, including the variability in depth of coverage among different bulk
sequencing datasets and the contamination of single-cell data by doublets. Using
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a comprehensive set of simulated data, we show that B-SCITE systematically
outperforms existing methods with respect to tree reconstruction accuracy and
subclone identification. High-fidelity reconstructions are obtained even with a
modest number of single cells, suggesting that combined bulk and single-cell
data may be a competitive strategy for tumor phylogeny reconstruction. On real
data, we show that B-SCITE provides more realistic mutation histories compared
to the results reported in previous studies or obtained by existing methods.
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The ability to issue sequence-level searches over publicly available databases
of assembled genomes and known proteins has played an instrumental role in
many studies in the field of genomics, and has made BLAST [2] and its variants
some of the most widely-used tools in all of science. However, until recently,
tools for searches over genomic data were restricted to reference sequences. As
a result, the vast majority of publicly-available sequencing data (e.g., the data
deposited in the SRA [3]) has been difficult to search because it exists in the
form of raw, unassembled sequencing reads.

Recently, Solomon and Kingsford introduced the sequence Bloom tree
(SBT) [8] for performing searches over thousands of sequencing experiments.
This seminal work introduced both a formulation of this problem, and the ini-
tial steps toward a solution. The space and query time of the SBT structure has
been further improved by Solomon and Kingsford [9] and Sun et al. [10].

Sequence Bloom trees repurpose Bloom filters to index large sets of raw
sequencing data probabilistically and, as a result, they are forced to cope with
Bloom filters’ limitations. For example, the SBT needs to merge Bloom filters,
but Bloom filters must be the same size to be merged, and they cannot be resized.
Consequently, SBTs use Bloom filters of the same size to represent sets of widely
varying cardinalities. As a result, most of the Bloom filters in the SBT are sub-
optimally tuned and inefficient in their use of space. (SBTs partially mitigate
this issue by compressing their Bloom filters using an off-the-shelf compressor.)

We introduce Mantis, a space-efficient data structure that can be used to
index thousands of raw-read experiments and facilitate large-scale sequence
searches on those experiments. Mantis uses counting quotient filters [5] instead
of Bloom filters, enabling rapid index builds and queries, small indexes, and
exact results, i.e., no false positives or negatives. Furthermore, Mantis is also a
colored De Bruijn graph (cDBG) representation, and supports the same fast de
Bruijn graph traversals as Squeakr [4], and hence may be useful for topological
analyses such as computing the length of the query covered in each experiment
(rather than just the fraction of k-mers present).
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Mantis has several advantages over prior work:

– Mantis is exact. A query for a set Q of k-mers and threshold θ returns exactly
those data sets containing at least fraction θ of the k-mers in Q. There are no
false positives or false negatives. In contrast, we show that SBT-based systems
exhibit only 57–67% precision, meaning that many of the results returned for
a given query are, in fact, false positives.

– Mantis supports much faster queries than existing SBT-based systems. In our
experiments, queries in Mantis ran up to 100× faster than when using an (in
RAM) SSBT.

– Mantis supports much faster index construction. For example, we were able
to build the Mantis index on 2,652 data sets in 16 hours and 35 min. SSBT
reported 97 hours to construct an index on the same collection of data sets.

– Mantis uses less storage than SBT-based systems. For example, the Mantis
index over the 2,652 experiments used for evaluation is 20% smaller than the
compressed SSBT index.

– Mantis returns, for each experiment containing at least 1 k-mer from the
query, the number of query k-mers present in this experiment. Thus, the full
spectrum of relevant experiments can be analyzed. While these results can
be post-processed to filter out those not satisfying a θ-query, we believe the
Mantis output is more useful, as one can analyze which experiments were close
to achieving the θ threshold, and can examine if a natural filtering “cutoff”
exists.

Mantis builds on Squeakr, a k-mer counter based on the counting quotient
filter (CQF). Prior work has shown how CQFs can be used to improve perfor-
mance and simplify the design of k-mer-counting tools [4] and de Bruijn graph
representations [6].

In a similar spirit, Mantis uses the CQF to create a simple space- and time-
efficient index for searching for sequences in large collections of experiments.
Mantis is based on cDBGs. The “color” associated with each k-mer in a cDBG
is the set of experiments in which that k-mer occurs (similar to Rainbowfish [1]).
We use an exact CQF to store a table mapping each k-mer to a color ID, and
another table mapping color IDs to the actual set of experiments containing
that k-mer. Mantis uses an off-the-shelf compressor [7] to store the bit vectors
representing each set of experiments.

Mantis takes as input the collection of CQFs representing each data set, and
outputs the search index. Construction is efficient because it can use sequential
I/O to read the input and write the output CQFs. Similarly, queries for the color
of a single k-mer are efficient since they require only two table lookups.

Mantis is available at https://github.com/splatlab/mantis.

https://github.com/splatlab/mantis
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Abstract. Identifying cell-type specific associations of genes with dis-
ease and mapping known associations to particular cell types is a key
in understanding disease etiology. While developments in technologies
for profiling genomic features such as gene expression and DNA methy-
lation have led to the availability of large-scale tissue-specific genomic
data, prohibitive costs drastically restrict collection of cell-type specific
genomic data. This, in turn, limits the identification of disease-related
genes and cell types. It is therefore desired to develop new approaches for
detecting cell-type specific associations between phenotypes and tissue-
specific genomic data.

We suggest a new matrix factorization formulation, which allows us
to deconvolve a two-dimensional input (observations by features) into
a three-dimensional output. Traditional matrix factorization formula-
tions essentially take as an input a multiple-source heterogeneous matrix
of observations and output a matrix of source-specific weights and a
matrix of source-specific features. We generalize this approach by assum-
ing that source-specific features are unique for each observation rather
than shared across all observations, and we propose Tensor Composi-
tion Analysis (TCA), a method for estimating observation- and source-
specific values based on the model.

We apply our model in the context of epigenetic association studies,
where DNA methylation data measured from a heterogeneous tissue are
often used, and we show that TCA allows us to extract cell-type specific
methylation levels from two dimensional tissue-specific methylation data.
We further derive a statistical test for detecting cell-type specific effects
of methylation on phenotypes based on the TCA model, and using a
simulation study we demonstrate its potentials and limitations. Finally,
using five large whole-blood methylation datasets, we demonstrate that
our model allows the detection of novel replicating cell-type specific asso-
ciations without collecting cost prohibitive cell-type specific data, thus

c© Springer International Publishing AG, part of Springer Nature 2018
B. J. Raphael (Ed.): RECOMB 2018, LNBI 10812, pp. 274–275, 2018.
https://doi.org/10.1007/978-3-319-89929-9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89929-9&domain=pdf


Tensor Composition Analysis Detects 275

suggesting an exciting new opportunity to unveil more of the hidden sig-
nals in genomic association studies with potential design implications for
future data collection efforts.
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Extended abstract

The ability to quickly and inexpensively describe the taxonomic diversity in an
environment is critical in this era of rapid climate and biodiversity changes.
The currently preferred molecular technique, barcoding, is low-cost and widely
used, but has drawbacks. As sequencing costs continue to fall, an alternative
approach based on genome-skimming has been proposed [1, 2]. This approach
first applies low-pass (100 Mb – several Gb per sample) sequencing to voucher
and/or query samples and then recovers marker genes and/or organelle genomes
computationally. In contrast, we suggest the use of the unassembled sequence
data for taxonomic identification using an alignment-free approach based on the
k-mer decomposition of the sequencing reads. Specifically, we first estimate the
average sequencing depth and error rate for each genome skim, by comparing
our derived theoretical distribution of k-mers’ multiplicity and the histogram
of k-mer counts computed using Jellyfish [3]. The genome length is also esti-
mated from the average sequencing depth accordingly. Then, the similarity of
two genome skims is measured by the Jaccard index between their correspond-
ing k-mer collections. Finally, the hamming distance between genomes is esti-
mated from the Jaccard index, using the following formula obtained by modeling
the impact of low sequencing coverage, sequencing error, and differing genome
lengths on the similarity of genome skims:

D = 1 −
(

2(ζ1L1 + ζ2L2)J
η1η2(L1 + L2)(1 + J)

)1/k

.
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In this equation, when coverage is low, we use all k-mers and set:

ηi = 1 − e−ci(1−k/�)(1−εi)
k

, ζi = ηi + ci(1 − k/�)(1 − (1 − εi)k) .

For higher coverages, we remove k-mers with multiplicity below a threshold m,
and set:

ζi = ηi = 1 −
m−1∑
t=0

(ci(1 − k/�)(1 − εi)k)t

t!
e−ci(1−k/�)(1−εi)

k

.

In these equations, k and � are k-mer and read length, respectively, and ci, εi,
and Li are substituted from the estimates of coverage, error rate, and genome
length for each genome skim. The Jaccard index between two genome skims, J ,
is computed by Mash [4] efficiently using a hashing technique.

We have tested our tool, Skmer, on genome skims simulated from assemblies
of 90 species from two genera of insects (Anopheles and Drosophila) and across
the avian tree of life. We test the accuracy of the distances computed by Skmer,
and subsequently use the distances to find the exact/closest match to a query
sample in a reference set of genome skims. Comparing to the other k-mer based
tools, Skmer shows excellent performance in our simulation studies, especially
when the coverage is below 4X [5].

Skmer makes the assembly-free approach to genome-skimming a viable alter-
native to the traditional barcoding. The software is made publicly available on
Github (https://github.com/shahab-sarmashghi/Skmer.git).
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Introduction. Recent advances in sequencing technologies now allow to assay
the entire complement of somatic alterations in large tumour cohorts [5]. Sev-
eral computational methods have been recently designed to identify driver alter-
ations, associated to the disease, and to distinguish them from passenger alter-
ations not related with the disease. The identification of driver alterations is
complicated by the extensive intertumour heterogeneity, with large (100–1000’s)
and different collections of alterations being present in tumours from different
patients and no two tumours having the same collection of alterations [6, 7].
One of the reasons for such heterogeneity is that driver alterations target cancer
pathways, groups of interacting genes performing given functions in the cell and
whose alteration is required to develop the disease [2, 7]. One of the main remain-
ing challenges is the identification of alterations with functional impact [3].

Several methods for the de novo discovery of mutated cancer pathways have
leveraged the mutual exclusivity of cancer alterations, with cancer pathways
displaying at most one alteration for each patient [3, 7]. The mutual exclusivity
property is due to the complementarity of genes in the same pathway, with
alterations in different members of a pathway resulting in a similar impact at
the functional level. An additional source of information that can be used to
identify genes with complementary functions are quantitative measures for each
samples such as functional profiles, obtained for example by genomic or chemical
perturbations [1]. The employment of such quantitative measurements is crucial
to identify meaningful complementary alterations since one can expect mutual
exclusivity to reflect in functional properties of altered samples which are specific
to the altered samples.

Methods and Results. We study the problem of finding sets of alterations with
complementary functional associations using alteration data and a quantitative
(functional) target measure from a collection of cancer samples. We provide a
rigorous combinatorial formulation for the problem and prove that the associated
computational problem is NP-hard. We develop two efficient algorithms, a greedy
algorithm and an ILP-based algorithm to identify the set of k genes with the
highest association with a target and prove rigorous guarantees in the quality of
their solutions.
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Our algorithms are implemented in our tool fUNctional Complementar-
ity of alteratiOns discoVERy (UNCOVER)1. We compared UNCOVER with
REVEALER [4], a recently developed greedy algorithm to identify mutually
exclusive sets of alterations associated with functional phenotypes. Consider-
ing four cancer datasets from [4], we compared the solutions obtained by our
algorithms with the solutions from REVEALER in terms of the information
coefficient (IC), the target association score used in [4] as a quality of the solu-
tion. Surprisingly, in two out of four datasets our methods, which do not consider
the IC score, identify solutions with IC score higher (by at least 5%) than the
solutions reported by REVEALER, while for the other two datasets the IC score
is very similar. These results show that UNCOVER identifies better solutions
than REVEALER when evaluated using our objective function and also when
evaluated according to the objective function of REVEALER.

In addition, UNCOVER has a running time that is on average two orders of
magnitude smaller than required by REVEALER. The efficiency of UNCOVER
enables the analysis of a large number of targets. We have run UNCOVER
on a dataset with thousands of functional targets and tens of thousands alter-
ations from the Achilles project dataset2 and the Cancer Cell Line Encyclope-
dia (CCLE). While running UNCOVER (including preprocessing) on the entire
dataset required 24 h, based on the runtime required on the instances reported
in [4] running REVEALER on this dataset would have required about 5 months
of compute time. On such large dataset, UNCOVER identifies several statisti-
cally significant associations between target values and mutually exclusive alter-
ations in genes sets.
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Background: Barcoded read sequencing allows short-reads to carry long-range
information by virtue of read “barcodes”, and has several advantages (including
significantly reduced cost and lower error rates) over long-read sequencing. Here
we introduce a two-tiered statistical binning approach, EMerAld—or EMA for
short—to barcoded read sequence alignment, an essential component of any bar-
coded sequencing pipeline, and as a result improve downstream genotyping and
phasing. Our method enables the probabilistic placement of reads between differ-
ent read clouds [1], and also in a single cloud that spans homologous elements.
The two tiers consist of: (i) a novel latent variable model to probabilistically
assign reads to possible source fragments; and (ii) newly exploiting expected read
coverage (read density) to resolve the difficult case of multiple repetitive align-
ments of reads within a single read cloud. These ambiguous alignments account
for a large fraction of the rare variants that currently cannot be resolved and
are of great interest to biologists [2].

Methods: Current linked-read alignment methods first perform a standard all-
mapping, then partition the resulting alignments into groups of nearby reads
with a common barcode called “read clouds”. Reads are then assigned to one of
their possible clouds by optimizing a global score function that takes into account
edit distance, mate pairs, read clouds, etc. Our two main conceptual advances
are as follows. Intuitively, rather than assigning each read to just one of its pos-
sible alignments at any given time, we make use of probabilistic assignments of
reads to clouds and employ a latent variable model to determine final alignment
probabilities; thereby, we select the most likely cloud (and thus alignment) for
each read. During the cloud alignment process, we also utilize a disjoint-set data
structure over read clouds to normalize alignment probabilities in a physically
sensible way. Once reads are assigned to clouds, we propose a different statis-
tical binning optimization approach to better handle the ubiquitous repetitive
regions of the genome. Whereas currently-used methods simply pick the lowest
edit distance alignment of a read in a given cloud, we instead optimize a com-
bination of edit distance and “read density”, which takes into account the read
density distribution over fragments. This two-tiered process can be interpreted
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Fig. 1. Overview of EMA pipeline. (a) Idealized model of linked-read sequencing,
wherein some number of unknown source fragments in a single droplet are sheared,
barcoded and sequenced to produce linked-reads. (b) EMA’s “read clouds” are con-
structed by grouping nearby-mapping reads sharing the same barcode; these clouds
represent possible source fragments. EMA then partitions the clouds into a disjoint-set
induced by the alignments, where two clouds are connected if there is a read aligning to
both; connected components in this disjoint-set (enclosed by dashed boxes) correspond
to alternate possibilities for the same unknown source fragment. EMA’s latent variable
model optimization is subsequently applied to each of these connected components indi-
vidually. (c) EMA applies a novel statistical binning optimization algorithm to clouds
containing multiple alignments of the same read to pick out the most likely alignment,
by optimizing a combination of alignment edit distances and read densities within the
cloud. In the figure, the green regions of the genome are homologous, thereby resulting
in multi-mappings within a single cloud. (d) While the statistical binning optimization
operates within a single cloud, EMA’s latent variable model optimization determines
the best alignment of a given read between different clouds, and produces not only the
final alignment for each read, but also interpretable alignment probabilities.

as statistical binning first in assigning reads to clouds and then within clouds.
The EMA pipeline is shown in Fig. 1.

Results: EMA is much faster and less memory intensive compared to other tools.
EMA’s overhead over the initial run of an all-mapper is virtually negligible,
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and EMA is at least 1.5× faster than Lariat (the current 10x alignment tool
[1]), which translates into days faster for the user. In addition, we show that
genotypes called from EMA’s alignments contain over 30% fewer false positives
than those called from Lariat’s, with a fewer number of false negatives, on 10x
WGS datasets of NA12878 and NA24385, as compared to NIST GIAB gold
standard variant calls. We also demonstrate that EMA’s alignments improve
phasing performance over Lariat’s in both NA12878 and NA24385, producing
fewer switch/mismatch errors and larger phased blocks on average.

Moreover, we demonstrate that EMA is able to effectively resolve alignments
in regions containing nearby homologous elements—a particularly challenging
problem in read mapping—through the introduction of our novel statistical bin-
ning optimization framework, which enables us to find variants in the pharma-
cogenomically important CYP2D region that go undetected when using Lariat or
BWA. This enhanced capability addresses one of the major weaknesses of linked-
read sequencing as compared to long-read sequencing, where only a relatively
small subset of the original source fragment is observed—and more specifically,
that the order of reads within the fragment is not known—making it difficult to
produce accurate alignments if the fragment spans homologous elements.

Discussion: Our advance is a general framework applicable to many barcoded
sequencing problems. It is likely to be of interest to any developers, and even
users, of barcoded or linked-read sequencing technologies that come along. We
highlight that 10x sequencing is just an instance of general “barcoded read
sequencing”, and other technologies that make use of the same paradigm already
exist and are likely to emerge in the future, given its numerous advantages over
long-read sequencing. Several technologies already employ barcoded sequencing
in addition to 10x Genomics’, such as Illumina’s TruSeq SLR platform (formerly
Moleculo), and Complete Genomics’ Long Fragment technology. Our framework
should apply to these (and similar) technologies as well. Due to their substantial
improvements over existing methods for aligning and interpreting linked-read
data, the algorithms employed by EMA are likely to be a fundamental compo-
nent of read cloud-based methods in the future.
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Introduction: Recent rapid advancements in sequencing technologies allowed
the collection of DNA, RNA, and protein data from tens of thousands of can-
cer patients. Mathematical and computational tools are used to analyze these
complex data sets, aiming to reveal mechanistic and predictive insights into
tumor treatment and progression. Key to achieving these goals is finding molec-
ular alterations that drive tumorigenesis, or drivers, such as single nucleotide
variants (SNVs), copy number alterations (CNAs), changes in the transcrip-
tional activity of genes, or changes in protein concentration. Groups of such
functionally connected genetic alterations, also termed cancer driver modules or
pathways, activate mechanisms that gradually contribute to triggering the hall-
marks of cancer, conferring fitness advantages to the tumors. The identification
of such driver modules is an important challenge in the field of cancer genomics,
since clinically targeting driver pathways can improve patient treatment. Nev-
ertheless, most of the existing computational tools to address this problem use
primarily somatic mutations, not fully exploiting additional data types. Here,
we describe ModulOmics, a method to de novo identify cancer driver modules
by integrating multiple sources of biological information (protein-protein inter-
actions, mutual exclusivity of mutations or copy number alterations, transcrip-
tional co-regulation, and RNA co-expression) into a single probabilistic model.

Methods: Given a set G = {G1, . . . , Gn} of genes and a collection
M = {M1, . . .Mm} of models for different data types, we introduce SG,
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the ModulOmics probabilistic score of the set G, reflecting how likely are the
genes in G to be functionally connected. SG is computed as the mean of m proba-
bilistic scores P (G | Mk), each representing the degree of functional connectivity
of the set G, under a different model:

SG =
1
m

m∑
k=1

P (G | Mk) (1)

Here, we consider four models, as follows: M1 computes the connectivity of the
genes in G based on their proximity in the protein-protein interaction (PPI)
network, M2 estimates the degree of mutual exclusivity among DNA alterations
of the genes in G across the patient cohort, M3 assesses the co-regulation of
the genes in G on the basis of their shared transcriptional regulators that are
active in the patient cohort, and M4 evaluates the transcriptional connectivity
of the genes in G based on their coexpression profiles. The goal of ModulOmics
is to identify groups that maximize the global score in Eq. 1. As the number of
candidate groups grows exponentially with maximal group size, we use a heuristic
two-step optimization procedure. The optimization routine first performs an
approximation of the exact scores of the set G under each of the four models Mk,
by decomposing them into pairwise scores and using integer linear programming
(ILP) to find good initial solutions. The initial solutions are further refined via
stochastic search starting from these initial solutions and using the global score.

Results: Using ModulOmics, we accurately identify known cancer driver genes
and pathways in three large-scale TCGA datasets of breast cancer, glioblas-
toma (GBM) and ovarian cancer, outperforming state-of-the-art methods for
module detection. Notably, in breast cancer subtypes, the highest scoring mod-
ules reliably separate cancerous from normal tissues in an independent patient
cohort. Focusing on individual subtypes, the modules of Her2 and Basal are
enriched with Gene Ontology (GO) terms related to cell proliferation, reflecting
their more aggressive nature. Driver modules in triple negative (TN) samples
capture the accumulation of down-regulated tumor suppressors such as TP53,
BRCA1, RB1 and PTEN, a pattern also supported by reverse phase protein
array (RPPA) data. The highest scoring modules in Luminal A suggest two
potential functionalities of PTEN : a canonical one as part of the PI3K path-
way, and a non-canonical one as a regulator of cell proliferation. ModulOmics
is freely available in two forms, as an open-source R code for the identification
of cancer driver modules from a cohort of cancer samples (https://github.com/
danasilv/ModulOmics), and as a webserver for the evaluation of any set of genes
of interest using the TCGA data processed in this study (http://anat.cs.tau.ac.
il/ModulOmicsServer/).
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Abstract. Understanding the evolution of cancer is important for the
development of appropriate cancer therapies. The task is challeng-
ing because tumors evolve as heterogeneous cell populations with an
unknown number of genetically distinct subclones of varying frequen-
cies. Conventional approaches based on bulk sequencing are limited in
addressing this challenge as clones cannot be observed directly. Single-cell
sequencing holds the promise of resolving the heterogeneity of tumors.
However, this advantage comes at the cost of elevated noise due to the
limited amount of DNA material present in a cell and the extensive DNA
amplification required prior to sequencing.

Here, we present SCIΦ, the first single-cell-specific variant caller that
combines single-cell genotyping with reconstruction of the cell lineage
tree. SCIΦ leverages the fact that the somatic cells of an organism are
related via a phylogenetic tree where mutations are propagated along
tree branches. Our inference scheme starts with an initial identification
of possible mutation loci and then performs joint phylogenetic inference
and variant calling via posterior sampling.

In a first step, likely mutated loci are identified using the posterior
probability of observing at least one mutated cell at a specific locus. In
order to do so, SCIΦ models the nucleotide counts using a beta-binomial
distribution. This is especially useful in the single-cell setting, since the
beta-binomial distribution can be described as a Pólya urn model, which
in turn is a very close approximation of the multiple displacement ampli-
fication commonly used to amplify the genomic material of a single-cell.

In a second step, the identified loci are used to infer the tumor phy-
logeny. Here, we account for dropout events by modeling the likelihood
of observing a mutation in a cell as a weighted mixture of the likelihoods
of homozygous reference genotype, heterozygous genotype, and homozy-
gous alternative genotype. Our model to infer tumor phylogeny consists
of three parts: the genealogical tree, the mutation attachments to edges,
and the parameters of the model. Because the tree search space grows
superexponentially in the number of cells, we employ a Markov Chain
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Monte Carlo scheme to traverse through the tree space with mutation
assignment and learn the parameters of the model.

Using the relationship between cells, we are able to reliably call
mutations in each single-cell even in experiments with high dropout
rates and missing data. We show that SCIΦ outperforms existing meth-
ods on simulated data and apply it to different real-world datasets.
Availability: https://github.com/cbg-ethz/SCIPhI

https://github.com/cbg-ethz/SCIPhI
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Extended Abstract

Synthetic RNA molecules are increasingly used to alter cellular functions [1–4].
These successful applications indicate that RNA-based therapeutics might be
able to target currently undruggable genes [5, 6]. However, to achieve this
promise, an effective method for delivering therapeutic RNAs into specific cells
is required. Recently, RNA aptamers emerged as promising delivery agents due
to their ability of binding specific cell receptors [7, 8]. Crucially, these aptamers
can frequently be internalized into the cells expressing these receptors on their
surfaces. This property is leveraged in aptamer based drug delivery systems by
combining such receptor-specific aptamers with a therapeutic “cargo” such that
the aptamer facilitates the internalization of the cargo into the cell [9–11]. The
advancement of this technology however is contingent on an efficient method to
produce stable molecular complexes that include specific aptamers and cargoes.
A recently proposed experimental procedure for obtaining such complexes relies
on conjugating the aptamer and the cargo with complementary RNA strands
so that when such modified molecules are incubated together, the complemen-
tary RNA strands hybridize to form a double-stranded “sticky bridge” connect-
ing the aptamer with its cargo [12, 13]. However, designing appropriate sticky
bridge sequences guaranteeing the formation and stability of the complex while
simultaneously not interfering with the aptamer or the cargo as well as not caus-
ing spurious aggregation of the molecules during incubation has proven highly
challenging.

To fill this gap, we developed AptaBlocks, a computational method to design
sticky bridges to connect RNA-based molecules (blocks). Accounting for the
three-step procedure [12, 13], we formulate the sticky bridge sequence design
as an optimization problem utilizing an objective function which reflects the
biophysical characteristics of the assembly process. Specifically, we designed the
objective function considering the equilibrium probabilities of the target struc-
tures over all possible structures of the aptamer-stick and cargo-stick, the proba-
bility of the interaction between the aptamer-stick and cargo-stick at equilibrium,
the hybridization energy between the sticky bridge sequences, and additional
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sequence constraints including but not limited to the GC content. We further
provide a simulated annealing algorithm that enables efficient estimation of the
corresponding combinatorial optimization problem. The effectiveness of the algo-
rithm has been verified computationally and experimentally. AptaBlocks can be
used in a variety of experimental settings and its preliminary version has already
been leveraged to design an aptamer based delivery system for a cytotoxic drug
targeting Pancreatic ductal adenocarcinoma cells [14]. It is thus expected that
AptaBlocks will play a substantial role in accelerating RNA-based drug delivery
design.
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Imputation has been widely utilized to aid and interpret the results of Genome-
Wide Association Studies(GWAS). Imputation methods, that aim to fill in
“data” at untyped SNPs, have emerged as an effective strategy to increase the
power of GWAS since the causal variant may not be directly observed or typed
in these studies. In the context of GWAS, there are two broad classes of methods
to impute association statistics at untyped SNPs. The first class, termed Two-
step imputation, imputes genotypes at untyped SNPs followed by computing
association statistics at the imputed genotypes [1–6]. In practice, the first step of
genotype imputation relies on discrete Hidden Markov Models (HMM) [1, 6]. The
second class of methods, termed summary statistic imputation (SSI), directly
imputes association statistics at untyped SNPs given the association statistics at
the typed SNPs. The joint distribution of association statistics at the typed SNPs
and untyped SNPs has been shown to follow a multivariate normal distribution
(MVN) [7–9]. SSI is appealing as it tends to be computationally efficient while
only requiring the summary statistics from a study while the Two-step impu-
tation methods require access to individual-level data which can be difficult to
obtain in practice.

Current summary-statistic based imputation methods calibrate the imputed
statistics using a technique we call variance re-weighting (SSI-VR). Despite
recent progress, the statistical properties of summary statistic imputation meth-
ods (including the impact of variance re-weighting) and the connection between
the two classes of summary statistic imputation methods has not been ade-
quately understood.

In this paper, we show that the two classes of imputation methods, Two-
step imputation and SSI are asymptotically multivariate normal with small
differences in the underlying covariance matrix. Using this asymptotic equiva-
lence, we can understand the effect of the imputation method on the power of
the study. Our new method, SSI, performs summary statistic imputation with-
out variance re-weighting. The resulting statistics do not then have unit variance
as in traditional summary statistic imputation but instead correctly take into
account the ambiguity of the imputation process.

We compared the performance of the different imputations methods on the
Northern Finland Birth Cohort (NFBC) data set [10] to show thatSSI increases
power over no imputation while SSI-VR can sometimes lead to lower power.
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Finally, we compared the results from SSI, SSI-VR and Two-step impu-
tation on the NFBC dataset and show that the resulting statistics are close
thereby justifying the theory.

References

1. Browning, S.R., Browning, B.L.: Rapid and accurate haplotype phasing and miss-
ing data inference for whole genome association studies using localized haplotype
clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007)

2. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., Abecasis, G.R.: Fast and
accurate genotype imputation in genome-wide association studies through pre-
phasing. Nat. Genet. 44(8), 955–959 (2012)

3. Howie, B.N., Donnelly, P., Marchini, J.: A flexible and accurate genotype impu-
tation method for the next generation of genome-wide association studies. PLoS
Genet. 5(6), e1000529 (2009)

4. Li, Y., Willer, C., Sanna, S., Abecasis, G.: Genotype imputation. Annu. Rev.
Genomics Hum. Genet. 10, 387–406 (2009)

5. Li, Y., Willer, C.J., Ding, J., Scheet, P., Abecasis, G.R.: MaCH: using sequence
and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epi-
demiol. 34(8), 816–834 (2010)

6. Marchini, J., Howie, B., Myers, S., McVean, G., Donnelly, P.: A new multipoint
method for genome-wide association studies by imputation of genotypes. Nat.
Genet. 39, 906–913 (2007)

7. Han, B., Kang, H.M., Eskin, E.: Rapid and accurate multiple testing correction and
power estimation for millions of correlated markers. PLoS Genet. 5(4), e1000456
(2009)

8. Kostem, E., Lozano, J.A., Eskin, E.: Increasing power of genome-wide association
studies by collecting additional single-nucleotide polymorphisms. Genetics 188(2),
449–460 (2011)

9. Hormozdiari, F., Kostem, E., Kang, E.Y., Pasaniuc, B., Eskin, E.: Identifying
causal variants at loci with multiple signals of association. Genetics 198(2), 497–
508 (2014)

10. Sabatti, C., Hartikainen, A.-L., Pouta, A., et al.: Genome-wide association analysis
of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41(1),
35–46 (2009)



Characterizing Protein-DNA Binding Event
Subtypes in ChIP-Exo Data

Naomi Yamada, William K. M. Lai, Nina Farrell, B. Franklin Pugh,
and Shaun Mahony(&)

Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene
Regulation, The Pennsylvania State University, University Park, PA 16802, USA

mahony@psu.edu

Introduction: A given regulatory protein may have multiple modes of interaction with
the genome; at some sites, it may directly bind cognate DNA motifs, while at others it
may bind indirectly via protein-protein interactions with other regulators. Each
protein-DNA interaction mode may be associated with distinct sequence motifs, and
may also produce distinct patterns in high-resolution protein-DNA binding assays. For
example, the ChIP-exo [1] protocol precisely characterizes protein-DNA crosslinking
patterns by combining chromatin immunoprecipitation (ChIP) with 5’ to 3’ exonu-
clease digestion. Since different regulatory complexes will result in different
protein-DNA crosslinking signatures, analysis of ChIP-exo sequencing tag patterns
should enable detection of multiple protein-DNA binding modes for a given regulatory
protein. However, current ChIP-exo analysis methods either treat all binding events as
being of a uniform type, or rely on DNA motifs to cluster binding events into subtypes.

We introduce the ChIP-exo mixture model (ChExMix) to systematically detect
multiple protein-DNA interaction modes in a single ChIP-exo experiment. ChExMix
discovers and characterizes binding event subtypes in ChIP-exo data by leveraging
both sequencing tag enrichment patterns and DNA motifs. ChExMix defines possible
binding event subtypes by both clustering observed ChIP-exo tag distribution patterns
and performing targeted de novo motif discovery around the positions of the predicted
binding events. ChExMix then uses an Expectation Maximization learning scheme to
probabilistically model the genomic locations and subtype membership of binding
events using both ChIP-exo tag locations and DNA sequence information. In analyzing
ChIP-exo data, ChExMix offers a more principled and robust approach to character-
izing binding subtypes than simply clustering binding events using motifs.

Results: ChExMix uses DNA motif and ChIP-exo tag distribution patterns to accu-
rately estimate multiple binding subtypes within a single ChIP-exo. We demonstrate
the ability of ChExMix to estimate binding subtypes and assign binding events to
subtypes by creating datasets that computationally mix data from CTCF and FoxA1
ChIP-exo experiments. CTCF and FoxA1 are known to display distinct ChIP-exo tag
distribution patterns at their respective binding events. We simulated different repre-
sentations of each subtype by modulating the relative number of tags drawn from each
ChIP-exo experiment. ChExMix detects the two subtypes and accurately assigns
subtypes to binding events over a wide range of relative sampling rates from the CTCF
and FoxA1 subtypes. In contrast, a motif-driven approach fails to appropriately classify
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many of the FoxA1 subtype binding events. ChExMix performance remains reasonably
high when we remove DNA motifs from consideration and assign subtypes using only
ChIP-exo tag distribution information. Our results demonstrate that ChExMix enables
discovery of unique subtypes within a single ChIP-exo dataset and accurately assigns
subtypes to binding events.

To assess ChExMix’s ability to characterize binding locations, we compare
ChExMix performance in predicting human CTCF and mouse FoxA2 binding event
locations to that of seven ChIP-exo analysis methods. ChExMix outperforms other
methods by exactly locating the CTCF events at the motif position in 90.2% of the
shared CTCF events. Similarly, ChExMix exactly locates the FoxA2 events at the
motif position in 67.4% of the shared FoxA2 events. ChExMix binding event pre-
dictions also contain instances of the cognate motif at a high rate. These results suggest
that ChExMix maintains high accuracy in protein-DNA binding event predictions.

We further demonstrate that ChExMix can characterize biologically relevant
binding event subtypes in ER positive breast cancer cells. FoxA1, ERα, and CTCF
have previously been shown to co-localize at a subset of genomic loci. However, how
these proteins interact with each other and DNA at specific sites remained elusive. In
FoxA1 ChIP-exo data, ChExMix identifies subtypes corresponding to ERα and CTCF
motifs, and about a half of these subtypes’ binding events display ERα and CTCF
ChIP-exo enrichment with similar tag distributions. Our results thus suggest that ERα
and CTCF may mediate binding of FoxA1 via protein-protein interactions at a subset of
the genomic loci where multiple factors are co-bound. These results strongly suggest
that ChExMix can discover binding event subtypes representing direct and indirect TF
interactions from a single ChIP-exo experiment.

Conclusions: ChExMix provides a principled platform for elucidating diverse
protein-DNA interaction modes in a single ChIP-exo experiment by exploiting both
ChIP-exo tag enrichment patterns and DNA motifs. Using a fully integrated frame-
work, ChExMix allows simultaneous detection of binding event locations, discovery of
binding event subtypes, and assignment of binding events to subtypes. ChExMix
enables new forms of insight from a single ChIP-exo experiment, taking analysis
towards a fine-grained characterization of distinct protein-DNA binding modes at
specific genomic loci. ChExMix is freely available from https://github.com/seqcode/
chexmix.
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Multi-species functional genomic data from various high-throughput assays are
highly informative for the comparative analysis of gene regulation to better
understand the molecular mechanisms of phenotypic diversity between human
and other mammalian species. Continuous-trait models, which are key to the
modeling of functional genomic signals, are gaining increasing attention in
genome-wide comparative genomic studies. However, computational models are
currently under-explored to fully capture continuous features in the context of
multi-species comparisons. There have been several types of continuous-trait
evolutionary models, including Brownian motion and Ornstein-Uhlenbeck (OU)
process. However, to the best of our knowledge, there are no existing computa-
tional methods available to simultaneously infer heterogeneous continuous-trait
evolutionary models along the genome based on functional genomic signals.

In this paper, we develop a new continuous-trait probabilistic model for more
accurate state estimation using multi-variate features from cross-species func-
tional genomic signals. We call our model phylogenetic hidden Markov Gaussian
processes (Phylo-HMGP). Phylo-HMGP incorporates the evolutionary affinity
among multiple species into the hidden Markov model (HMM) for exploiting
both temporal dependencies across species in the context of evolution and spa-
tial dependencies along the genome in a continuous-trait model. The goal of
the proposed method is to identify heterogeneous cross-species genomic feature
patterns more effectively. The Gaussian processes embedded in the HMM are
specialized to be multi-variate OU processes or Brownian motion in this study.

Both simulation studies and real data application demonstrate the effective-
ness of Phylo-HMGP. Importantly, we applied Phylo-HMGP to analyze a new
cross-species DNA replication timing (RT) dataset from the same cell type in
five primate species (human, chimpanzee, orangutan, gibbon, and green mon-
key). We demonstrate that our Phylo-HMGP model enables discovery of genomic
regions with distinct evolutionary patterns of RT. We found that regions with
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conserved early RT and conserved late RT exhibit strong correlation with con-
stitutive early RT and constitutive late RT, respectively, defined from human ES
cell differentiation. In addition, we found enrichment for specific cis-regulatory
elements in hominini specific early RT regions.

Taken together, the proposed Phylo-HMGP explores a new integrative frame-
work to utilize continuous-trait evolutionary models with spatial constraints to
study genome-wide functional genomic features across species. The new method
is also flexible such that varied continuous-trait evolutionary models or assump-
tions can be incorporated. We believe that Phylo-HMGP provides a generic
framework that has the potential to more precisely capture the evolutionary his-
tory of regulatory regions based on functional genomic signals across different
species.
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We study how to predict inter-protein residue-residue contacts between a pair of
putative interacting proteins, which has been reported useful for the 3D structure
modeling of a PPI or protein docking. Direct-coupling analysis (DCA) has been applied
to intra-protein and inter-protein contact prediction, but it does not fare well for pro-
teins without many sequence homologs. This is a big issue for inter-protein contact
prediction since it is challenging to find so many interlogs (i.e., interacting homologs).
Because of this, currently DCA for inter-protein contact prediction mainly focuses on
prokaryotes and mitochondria [1, 2] since it is relatively easy to find interlogs in
prokaryotes, but not in eukaryotes with abundant paralogs.

We have developed a deep learning (DL) method for intra-protein contact pre-
diction [3–5], which greatly outperformed DCA and was officially ranked first in
CASP12 [6]. Our DL method needs much fewer sequence homologs than DCA to be
effective because it makes use of contact occurrence patterns, in addition to
co-evolution, for contact prediction. This abstract shows that DL can also work on
inter-protein contact prediction, especially for eukaryotes. To avoid overfitting, we do
not train our DL model using any protein complex data (i.e., inter-protein contacts), but
use our previous DL model trained by only protein chains (i.e., intra-protein contacts)
to predict inter-protein contacts.

We propose a new phylogeny-based method to identify interlogs for a putative
interacting protein pair, especially for eukaryotes in which some interacting genes may
have big genomic distance. Coupled with DL, this new method works better on
eukaryotes than genome-based methods employed by Baker [1] and Marks [2].

As shown in Fig. 1, given a pair of putative interacting proteins A and B under
prediction, we first build multiple sequence alignments (MSAs) for A and B, respectively.
Then we employ genome- and phylogeny-based strategies to concatenate MSA_A and
MSA_B into two pairedMSAs consisting of only interlogs. Finally, we use ourDLmethod
to predict two inter-protein contact maps and average them for final prediction. Our DL
method outperforms pure DCA on three large datasets and works on both prokaryotes and
eukaryotes. Table 1 shows the performance comparison on Baker’s dataset.

© Springer International Publishing AG, part of Springer Nature 2018
B. J. Raphael (Ed.): RECOMB 2018, LNBI 10812, pp. 295–296, 2018.
https://doi.org/10.1007/978-3-319-89929-9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89929-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89929-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89929-9&amp;domain=pdf


References

1. Ovchinnikov, S., Kamisetty, H., Baker, D.: Robust and accurate prediction of residue–residue
interactions across protein interfaces using evolutionary information. Elife 3, e02030 (2014)

2. Hopf, T.A., et al.: Sequence co-evolution gives 3D contacts and structures of protein
complexes. Elife 3, e03430 (2014)

3. Wang, S., et al.: Accurate de novo prediction of protein contact map by ultra-deep learning
model. PLoS Comput. Biol. 13(1), e1005324 (2017)

4. Wang, S., et al.: Folding membrane proteins by deep transfer learning. Cell Syst. 5(3),
202–211. e3 (2017)

5. Wang, S., Sun, S., Xu, J.: Analysis of deep learning methods for blind protein contact
prediction in CASP12. Proteins: Struct. Funct. Bioinf. (2017)

6. Schaarschmidt, J., et al.: Assessment of contact predictions in CASP12: co-evolution and
deep learning coming of age. Proteins (2017)

Fig. 1. Method flowchart

Table 1. Inter-protein contact prediction accuracy (%) on Baker’s data. GCNN is our method
and (s) indicates a web server. EVfold is same as EVcomplex, but run locally with our MSAs.
“Genome” and “Phylogeny” denote two MSA generation methods. “Merged” indicates
prediction is merged from “Genome” and “Phylogeny”. Columns 3–9 show accuracy of top
L/10, L/20, 20 and 10 predicted contacts.

Predictor MSA L/10 L/20 20 10

EVcomplex(s) Built-in 14.25 20.10 21.55 26.55
Gremlin(s) Built-in 23.74 33.23 41.21 52.76

EVfold Genome 28.01 39.45 46.90 57.59
EVfold Phylogeny 15.61 23.09 26.21 36.21

EVfold Merged 25.13 36.12 42.07 54.83
CCMpred Genome 28.44 39.54 47.41 53.45
CCMpred Phylogeny 17.04 25.49 30.34 39.31

CCMpred Merged 27.70 38.72 46.03 55.52
GCNN Genome 51.41 60.80 62.76 68.79
GCNN Phylogeny 32.61 39.30 42.24 47.59
GCNN Merged 48.25 57.09 60.52 65.86
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