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Abstract: Background: Biomedical sciences use a variety of data sources on drug mole-
cules, genes, proteins, diseases and scientific publications etc. This system can be best pic-
tured as a giant data-network linked together by physical, functional, logical and similarity 
relationships. A new hypothesis or discovery can be considered as a new link that can be 
deduced from the existing connections. For instance, interactions of two pharmacons - if not 
already known - represent a testable novel hypothesis. Such implicit effects are especially 
important in complex diseases such as cancer. 

Methods: The method we applied was to test whether novel drug combinations or novel 
biomarkers can be predicted from a network of existing oncological databases. We start 
from the hypothesis that novel, implicit links can be discovered between the network neigh-
borhoods of data items. 

Results: We showed that the overlap of network neighborhoods is strongly correlated with the pairwise interac-
tion strength of two pharmacons used in cancer therapy, and it is also well correlated with clinical data. In a sec-
ond case study we employed this strategy to the discovery of novel biomarkers based on text analysis. In 2012 we 
prioritized 10 potential biomarkers for ovarian cancers, 2 of which were in fact described as such in the subse-
quent years. 

Conclusion: The strategy seems to hold promises for prioritizing new drug combinations or new biomarkers for 
experimental testing. Its use is naturally limited by the sparsity and the quality of experimental data, however 
both of these aspects are expected to improve given the development of current databases. 
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1. INTRODUCTION 
 The network view on biological data has profoundly influenced 
the ways we are looking at problems of diagnosis and therapy in 
life sciences today. In traditional paradigms, we looked at data as 
isolated entities stored in organized databases. Today, we increas-
ingly consider data as an interconnected network. There are many 
kinds of connections - for instance drugs can be connected to dis-
eases, to their protein targets, to genes producing the targets, or to 
drugs they can replace or antagonize. In a similar manner, proteins 
can be linked to other proteins they physically contact, to genes 
they regulate, to diseases they play a role in, etc. This is a very 
complex picture, because we have many types of entities and rela-
tionships that are defined in separate ontologies that in turn can be 
considered as networks of terms. The storage and manipulation of 
such a large body of data is clearly too demanding for current com-
puters. In addition, such data networks are both are just taken over 
from homologous proteins of various organisms. Also, we cannot 
be sure whether or not two proteins are linked in all tissues and/or 
in all phases of the cell cycle. 
 The solution of these problems is to break down the hypotheti-
cal data-network into specific - disease-specific, tissue-specific etc. 
- manually curated parts which contain reliable information on a  
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given problem. This is a tedious and labor-intensive solution which 
is justified only in very important fields. Cancer-specific data net-
works, the subject of this work, are an example of this approach. In 
addition, there are two major information sources that can help 
data-sparsity problems. On the one hand, various high-throughput 
experimental methods (two hybrid systems, Chip-seq, etc.) provide 
novel kinds of molecular interaction data that in principle can be 
easily added to the existing databases. However, high throughput 
data are most often laden with noise which has to be handled. On 
the other hand, literature databases that contain abstracts or full text 
of scientific papers provide a large body of new knowledge that can 
in principle be linked to molecular data. Again, the process is not 
trivial: scientific texts use natural language and concepts are often 
not analogous to the ones used in other texts or in molecular data-
bases. 
 Disease-specific databases and tools represent a current ap-
proach where the above problems are tackled by large communities 
of scientists. Cancer databases and tools are a typical example, 
since cancer is one of the most important complex diseases which is 
responsible for ~15% of all human deaths, and which has >100  
more-or-less well-characterized types and >500 human genes asso-
ciated with it [1, 2]. Oncologists use a variety of traditional data-
bases, but there are a number of data-collection efforts dedicated to 
the collection of data on various cancer types. All this provides a 
solid knowledge base for designing integrated data-networks in 
which novel questions related to cancer therapy can be answered. 
Here we are concerned with two types of questions that can be ad-
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dressed via integrated data networks: i) finding drug combinations 
potentially useful for cancer therapy. We tackle this problem by 
using a simple network overlap measure applied to data networks. 
And ii) finding novel gene-disease associations in ovarian cancer 
for generating a list of potential biomarkers. We approach this prob-
lem using a text mining approach applied to MEDLINE abstracts 
[3] as well as the STRING database [4]. Section 2 is an introduction 
to the problem of chemotherapy. Section 3 describes the main data-
base types used in this project. Section 4 contains the mathematical 
and computational background. Section 5 describes the identifica-
tion of drug combinations via a network overlap measure. Section 6 
describes the principle of hypothesis generation via network over-
lap analysis. Section 7 discusses conclusions and future trends.  

2. CHEMOTHERAPY 
 Chemotherapy is the most frequently used first-line treatment of 
cancer. Chemoterapeutic agents target all dividing cells in the body 
either by killing them (cytotoxic agents) or by blocking prolifera-
tion without cell elimination (cytostatic agents), regardless of their 
status as normal or neoplastic. Tumor cells proliferate rapidly, thus 
agents selectively damaging dividing cells exhibit a selective ad-
vantage. Victims of such a universal destruction are the fast-
growing normal cells, accounting for the side effects of chemother-
apy such as damaged hair follicles, irritated epithelium of the mouth 
and digestive tract, and suppression of myelopoietic precursors in 
the bone marrow. 
 Chemotherapeutic agents can be classified according to the 
mechanisms of their action. Drugs can destruct the structure of 
DNA, stop metabolic processes and obstruct protein structures of 
the mitotic spindle. Cell cycle consist of four different phases: G1 
(protein synthesis and cell growth), S (DNA replication), G2 (fur-
ther protein synthesis and cell growth) and M (mitosis) - some 
agents are cell-cycle-phase-specific while other agents require cell 
proliferation for action but are not linked to any given phases of the 
cell cycle [5]. Chemotherapeutic agents can be classified into five 
main categories. Alkylating agents are not cell-cycle-phase specific 
and their effects are dose-dependent, thus cell killing is a linear 
function of the applied dose of the medication. They form covalent 
bond with amino, sulfhydryl, phosphate and carboxyl groups to 
alkylate biologically active molecules and block the function of 
DNA, but also RNA and proteins [5]. The group consists of nitro-
gen mustards, platinum agents, nitrosoureas and cyclophosphamids. 
Nitrogen mustards are similar to mustard gas and are mainly effec-
tive in the hematopoietic system [6], while the lipid soluble nitro-
soureas used to target brain tumors penetrate through the blood-
brain barrier [5]. Carboplatin is a standard agent of care for ovarian 
cancer [7-9]. Antitumor antibiotics have been isolated from natural 
sources, such as plants, bacteria and fungi. Antibiotics intercalate 
between DNA base-pairs, thus inhibit transcription and RNA syn-
thesis. Their effectiveness is limited by dose-dependent cardiotoxic-
ity as a main adverse effect [10]. Frequently used antibiotics are 
actinomycin-D, mitoxantron and anthracyclines such as doxorubi-
cin.  Anthracyclines also inhibit topoisomerases I and II. Antime-
tabolites are structurally similar analogues of naturally occurring 
molecules. They interfere with metabolic processes either by com-
peting for key enzymes or substituting components of DNA during 
synthesis, thus block cell-cycle in the S phase. Antimetabolites 
show a nonlinear dose-response, thus after a given concentration no 
further cells are eliminated. Methotrexate inhibits folate biosynthe-
sis, ultimately leading to purine and pyrimidine depletion within the 
cell [11]. Nucleoside analog 5-fluorouracil and cytarabin interfere 
with pyrimidin synthesis, while mercaptopurin, azathioprin, pen-
tostatin and thioguanin hamper purin production. Vinca alcaloids 
and taxanes consist of cell-cycle-phase specific antimicrotubule 
blocking chemotherapy agents. During the S phase vinca alcaloids 
bind to tubulin, prevent polymerization and eventually mitotic spin-
dle formation. Taxanes on the other hand, such as paclitaxel and 
docetaxel stabilize tubulin inhibiting depolymerization and cell 

division [12]. Topoisomerase inhibitors, such as camptothecin ana-
logs (irinotecan) inhibit DNA elongation by blocking topoi-
somerase I in the S phase of the cell cycle [13]. Anthracyclines 
inhibit both topoisomerase I and II [5]. 
 Response to chemotherapy is classified as complete (tumor is 
untraceable), partial (50% shrinkage) or minimal (stable disease). 
When chemotherapy fails tumor progression continues. Chemore-
sistance is a complex multifactorial phenomenon [14, 15]. Mecha-
nisms of resistance include pharmacological factors such as inade-
quate drug concentrations due to low accessibility of the tumor. 
Cellular resistance factors include detoxifying or transport mecha-
nisms reducing drug concentrations in the target cell, altered drug-
target interactions including the ability of the cells to repair dam-
aged DNA, tolerate stress and evade apoptotic death [16-20]. Inher-
ited genetic variability also influences susceptibility to chemothera-
peutic agents. Single nucleotide polymorphisms (SNPs) have also 
been linked to altered drug response [21]. The one-gene one-drug 
approach with relevance to cancer chemotherapy has been gradu-
ally replaced by studying genetic variation on entire biological or 
pharmacological pathways, such as the complex network underly-
ing folate metabolism [22] or enzymes responsible for detoxifica-
tion [23]. 
 Combination chemotherapy blends cytotoxic drugs with differ-
ent mechanisms of action. The goal is to eliminate a broader range 
of resistant cells in the heterogeneous population of cancerous cells, 
to prevent or slow the emergence of resistant clones, and to maxi-
mize the additive or synergistic effects of drugs on cell kill. Com-
pelling evidence support combination treatments over sequential 
monotherapy [24]. Preferable combinations include drugs with 
different mechanisms of action, such as paclitaxel with cisplatin, 
and different pattern of resistance [5]. When applied sequentially, 
the order of combined agents influences responses. For example 
carboplatin followed by docetaxel in advanced non-small-cell lung 
cancer patients suggested higher response rate when compared to 
reverse arrangements [25].  

2.1. Systemic Therapy of Recurrent or Metastatic Breast  
Cancer 
 In 2012 alone over 1.7 million women were diagnosed with 
breast cancer being the most common cancer in women [26]. High 
numbers pose economic burden and affect the quality of life of an 
enormous population. The universal goal to increase treatment effi-
ciency is not trivial, as breast cancer is a heterogeneous disease. 
Based on molecular features breast cancers are grouped into sub-
types with distinct gene expression pattern comprising luminal A, 
luminal B, basal like and HER2 positive subtypes [27]. Each of 
these phenotypes require different management. The picture is fur-
ther complicated with cancer stage and menopausal status. Local 
treatment of primary breast cancer differs from the systemic treat-
ment of advanced or metastatic disease. Preoperative, so called 
“neo-adjuvant” treatments, such as anthracyclines or endocrine 
agents given preoperatively are expected to down-stage the disease. 
Advanced incurable malignancies require a sturdier cytotoxic 
treatment compared to a less serious disease. The guidelines of the 
US National Comprehensive Cancer Network suggest a list of pre-
ferred single agents for recurrent or metastatic breast cancer (that is 
not HER2-positive): doxorubicin or pegylated liposomal doxorubi-
cin, paclitaxel, capecitabine or gemcitabine, vinorelbin or eribulin. 
Other single agent chemotherapies include cyclophosphamide, cap-
boplatin, docetaxel, albumin-bound paclitaxel, cisplatin, epirubicin, 
ixabepilone. Chemotherapy combinations are listed in Table 1. 

2.2. Targeted Molecular Therapy 
 Unfolding the molecular mechanisms underlying neoplastic 
transformation [28] opened a new, “personalized” era in clinical 
practice. Identification of driver mutations [29] allowed the rational 
design of molecular-targeting agents (MTAs). MTAs as single or 
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combination therapies aim at aberrations that appear in a broad 
range of cancers and can be targeted in many tumor cells simulta-
neously. Patients are eligible to a therapy with MTAs only if their 
cancer bears a driver mutation targeted by the given agent. Thera-
pies include monoclonal antibodies (mAbs), that deplete growth 
factor supply for the cells or prevent receptor dimerization, and 
small-molecule inhibitors that block the initiation of intracellular 
signal transduction or possess catalytic activities [30].  
 The efficacy of monotherapies using molecularly targeted 
agents is often inferior compared to combination strategies. The 
reason for this is that relatively few malignancies depend on only 
one unique pathway to achieve the malignant transformation. For 
instance, targeting the hyperactive ABL1 kinase with small mole-
cule tyrosine kinase inhibitors, such as imatinib and nilotinib pro-
duced superior clinical outcome in chronic myeloid leukemia [31, 
32]. The complexity of signaling pathways and heterogeneity of 
tumors called forth the combination of MTAs and cytotoxic agents. 
In this, agents are selected based on biological considerations to 
alter complementary pathways of signal transduction or to inhibit 
multiple target molecules within the same pathway [33]. In general, 
MTAs are considered to be less toxic than conventional che-
motherapies [34], but when combined, the crosstalk between path-
ways may result in unpredictable toxicities [35].  

2.3 HER2 Positive Breast Cancer 
 Evolution of treatment choice in HER2-positive breast cancer 
illustrates the difficulties in targeting complex biological systems. 
About 20% of breast cancer patients overexpress Epidermal Growth 
Factor Receptor 2 (HER2), facing aggressive tumor growth and 
inferior prognosis [36]. The first successful targeted therapy ap-
proved by FDA in 1998 was an anti-HER2 monoclonal antibody, 
trastuzumab, combined with chemotherapy. The treatment dramati-
cally changed the clinical outcome of the aggressive HER2-positive 
metastatic breast cancer [37, 38]. Trastuzumab monotherapy was 
effective in about 15-26% of patients [39], and combining trastu-
zumab with chemotherapy provided significantly better outcomes 
[40].  
 HER2 (ERBB2/neu) belongs to the family of type I receptor 
tyrosine kinases (RTKs) including EGFR (ERBB1), HER3 
(ERBB3) and HER4 (ERBB4). HER2 is overexpressed in tumor 
tissue but not in healthy cells, hence offers an ideal target for per-
sonalized therapy. Ligand binding of RTKs - except HER2 with no 
known ligand - induces receptor homodimerization or heterodi-
merization at the plasma membrane. Dimerization activates com-

plex signal transduction involving the PI3K/Akt, Ras/MAPK, and 
JAK/STAT pathways, leading to cell transformation and cancer. 
Ligand and heterodimer compositions tightly regulate downstream 
signaling. With its permanently open conformation, HER2 is a fa-
vored dimerization partner of the other RTKs conferring lateral 
transmission to create a complex network of signaling pathways 
[41].  
 Redundant signaling cascades, as in the case of EGFR receptor 
family, facilitate by-passing the targeted node in the network [42]. 
Eventually, about 70% of patients develop resistance against trastu-
zumab. In addition, more superior patient stratification will be 
needed to improve initial clinical response. Despite constant evalua-
tion of predictive biomarkers, the extent of HER2 expression re-
mains the sole reliable trait for treatment decision [43]. Improved 
outcome can be obtained in case the inhibition involves other mem-
bers of the EGFR receptor family. Preferred first line treatment 
includes simultaneous treatment with pertuzumab and trastuzumab 
assisted either by docetaxel or paclitaxel [44, 45]. Pertuzumab tar-
gets the second extracellular domain of HER2 and prevents its di-
merization with HER3.  
 Following the most current NCCN guidelines, in case the pre-
ferred first line treatment cannot be implemented, the subsequent 
regimes should include the antibody-drug conjugate trastuzumab 
emtansine (T-DM1), consisting of trastuzumab covalently linked to 
a microtubule inhibitor [46]. Trastuzumab is also suggested to be 
utilized in combination either with paclitaxel and carboplatin, or 
with one of the following: docetaxel, vinorelbine, or capecitabine. 
Lapatinib, a small-molecule tyrosine kinase inhibitor blocks EGFR 
and prevents its dimerization with HER2. After trastuzumab failure, 
addition of lapatinib to chemotherapy improved post-progression 
free survival rates in metastatic breast cancer patients [47]. Trastu-
zumab combined with lapatinib offers a chemotherapy-free alterna-
tive to trastuzumab exposed HER2-positive breast cancer. Trastu-
zumab exposed HER2-positive breast cancer may also be treated 
with the combination of lapatinib and capecitabine, or trastuzumab 
and capecitabine. Trastuzumab can be combined with other single 
agents as long as anthracyclines are avoided due to increased car-
diac cytotoxicity. 

2.4 Ovarian Cancer 
 Ovarian cancer is the fifth most common cancer in women 
worldwide and the most deadly gynecologic malignancy, as less 
than 30% of patients with advanced disease reach 5 year survival 
[48]. It is characterized with extreme heterogeneity, as a consider-

Table 1. Chemotherapy combinations for recurrent or metastatic breast cancer adapted from the Guidelines of the US National 
Comprehensive Cancer Network. 

Regimen Component 1 Component 2 Component 3 

CAF/FAC cyclophosphamide doxorubicin fluorouracil 

FEC fluorouracil epirubicine cyclophosphamide 

AC doxorubicin cyclophosphamide  

EC epirubicine cyclophosphamide  

CMF cyclophosphamide methotrexate fluorouracil 

 docetaxel capecitabine  

GT gemcitabine paclitaxel  

 gemcitabine carboplatin  

 paclitaxel bevacizumab  
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able proportion of tumors does not originate from the ovaries [49, 
50]. Their common features are their shared location and dissemi-
nation to the pelvic organs. Histological subtypes display cellular 
and molecular diversity and distinct pathogenesis. Type I tumors 
progress from benign precursor lesions and consist of low-grade 
serous, low-grade endometrioid, clear cell, mucinous and Brenner 
carcinomas with a distinct genetic profile and a low malignant po-
tential. Type II tumors including high-grade serous, high-grade 
endometrioid, undifferentiated and mixed-mesodermal tumors are 
highly aggressive, genetically unstable, lack precursor lesions, fre-
quently harbor p53 mutations (<90%), and approximately 20% of 
them carry BRCA1/2 mutations [51, 52].  
 About 80-85% of women are diagnosed with serous carcinoma, 
followed by endometrioid (10%), with clear cell and mucinous 
cancers being the least common subtypes. Clear cell and mucinous 
tumors appear in earlier stages more frequently than serous cancers, 
providing a generally good prognosis. Type I patients fare better 
after surgery and usually do not require chemotherapy [53]. How-
ever, the lack of symptoms at an early stage frequently results in a 
late diagnosis when the tumor has already reached an advanced 
state. The extent of surgical tumor-mass reduction is an important 
prognostic factor of survival. Complete resection of advanced tu-
mors improves both progression-free and overall survival compared 
to suboptimal surgical outcomes [54]. Surgery complemented with 
adjuvant or neo-adjuvant carboplatin-paclitaxel treatment has been 
the standard of care in the past 15 years [55, 56]. In case of pacli-
taxel intolerance pegylated liposomal doxorubicin (PLD)-
carboplatin or docetaxel-carboplatin treatments provide an alterna-
tive solution [57, 58]. Despite the good initial responses about 70% 
of patients relapse within the first three years. The relatively poor 
survival data compared to other types of solid tumors necessitated a 
more refined methodology. Ovarian histotypes are treated now as 
distinct diseases with different mutational profiles and treatment 
requirements, influencing early detection, clinical trial design and 
the identification of new drugable targets [59, 60]. 
 Contrary to the good results associated with early stage muci-
nous cancers, women with advanced mucinous tumors do worse 
compared to other histological types of advanced disease related to 
the high frequency of platinum-resistance [61]. Mucinous tumors 
represent a distinct spectrum of ovarian cancers ranging from be-
nign to invasive with an individual molecular profile featuring fre-
quent KRAS but infrequent p53 and BRCA mutations [62, 63]. 
Oxaliplatin combined with 5-fluorouracil represents a promising 
alternative treatment specific to mucinous tumors, validated in vitro 
and on xenografts [64]. 
 Ovarian clear cell cancers (OCCC) in advanced stages are also 
particularly malignant, and refractory to platinum-based chemo-
therapy [65]. Clean cell cancers are characterized by high frequency 
mutations in the PIK3CA catalytic subunit of the PI3K gene [66] 
and mutations in the chromatin remodeling ARID1A gene [67]. The 
gene expression profiles resembling renal clean cell cancers, such 
as MET overexpression and overactivation of IL6-STAT3-HIF 
signaling pathway, suggest that antiangiogenic treatment used on 
renal clean cell tumors, such as the multi-kinase inhibitor sunitinib, 
may be applicable to OCCC [68].  
 The high-grade serous ovarian cancer (HGSOC) is of particular 
interest, as it accounts for 70-80% of ovarian cancer fatalities. 
Large portion of HGSOCs originate from outside of the ovaries, 
from the distal part of fallopian tubes [50]. Despite its sensitivity to 
platinum derived medications and other DNA damaging agents, 
patient survival has not been improved for years, as therapies tar-
geting specific tumor biomarkers were lacking. Transcriptional 
profiling separated mesenchymal, immune, differentiated and pro-
liferative subtypes associated with different prognosis, although the 
distinction has not yet been translated to clinical decisions [69]. 
Sequencing HGSOC revealed a frequent driver p53 missense or 
nonsense mutation indicating its role in tumor initiation [70], and 

the inactivation of tumor suppressor genes RB1, NF1, RAD51B and 
PTEN [71]. Germline mutations, and other genetic/epigenetic 
events, such as promoter methylation related to BRCA1/2 genes 
render homologous recombination (HR) DNA repair pathways 
defective in about 50% of HGSOCs [71]. CCNE1 encoding cyclin 
E1 for cell cycle progression is amplified in a large proportion of 
HGSOC that lacks defects in the HR pathways, likely representing 
an early event in tumor progression [51]. Drugs targeting cells defi-
cient in DNA repair, such as poly (ADP) ribose polymerase 
(PARP)-inhibitors, selectively kill tumor cells with dysfunctional 
BRCA1/2. Olaparib, the first PARP-inhibitor have been approved 
for use as a maintenance therapy in Europe and for advanced recur-
rent disease in the USA, to the great advantage of BRCA-related 
ovarian cancer patients, particularly with a platinum-sensitive dis-
ease [72]. 

2.5. Future Perspectives 
 Precision medicine targeting specific mutations has its limita-
tions and the transcriptional targets of key driver genes are still 
elusive [73]. The initial enthusiasm seems to dampen as long term 
survival data have emerged with limited success. For example, 
initially well responding patients with cutaneous melanomas treated 
with the BRAF inhibitor vemurafenib relapsed shortly after treat-
ment [74]. ALK-positive lung cancer patients treated with crizotinib 
showed a 65% response rate - but the median duration of response 
was only 8 months [75]. In HER2-positive breast cancer, the major-
ity of patients develop resistance within the first year of trastuzu-
mab treatment [76-78]. Current guidelines suggest the simultaneous 
combination of molecularly targeted and immune checkpoint ther-
apy [79]. The concept behind this approach is that T cells of the 
adaptive immune system show a remarkable ability to match the 
diversity and adaptability of tumors. Immune therapy can unleash T 
cells specific to many antigens present in the tumor by targeting a 
single immune checkpoint. In spite of promising ongoing studies, 
current results suggest durable tumor inactivation only in a fraction 
of patients [80].  

3. CANCER AND DRUG-RELATED DATA-NETWORKS  
 Biological databases, including the ones related to cancer che-
motherapy, contain annotated data items cross referenced to each 
other. In the mathematical sense, such an entity can be pictured as a 
subgraph or subnetwork, in which some of the edges (cross refer-
ences) point to other entities or subgraphs defined in other data-
bases. For instance, a drug in the drug interaction database can be 
linked to another drug item within the same database, as well as to a 
disease defined in a medical ontology [81, 82], a protein defined in 
Uniprot, etc. In principle, there is no problem to represent all such 
subgraphs in one large network which we term here a data network. 
The advantage of such a network is that it allows a large variety of 
queries to be answered within the same system. In practice, the 
construction of such a large network is prohibitively difficult. First, 
it would be far too large, second, it would contain a large number of 
heterogeneous and partly conflicting data types [83]. The current 
solution is to build partial networks that allow one to answer a few 
questions related to a given project. For instance, a network com-
bining drug targets and protein-protein interactions will contain 
links (network paths) between proteins that are targeted by the same 
(or similar) drugs or drugs that act on proteins that are in physical 
contacts. Such a network allows one to find out if two drugs are 
likely to act on related or interacting targets. 
 From the practical point of view, cancer data networks consist 
of, on the one hand, dedicated cancer related sequence databases 
and, on the other hand, molecular and molecular interaction data-
bases that include drug and drug interaction databases. The former 
ones are collected by focused next generation sequencing projects 
carried out by an often large number of research groups (Table 2). 
Such projects contain data on cancer mutations, and are often di-
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vided into type-specific datasets or comprehensive datasets. An-
other subgroup of these databases are data resources that are made 
available via WWW interfaces and include dedicated search facili-
ties. 
 Molecular and molecular interaction databases are used to build 
cancer data network consisting of those datasets that help one to 
describe and interpret cancer related sequence information. These 
databases can be roughly categorized as 1) general purpose se-
quence databases, 2) drug related databases, 3) molecular interac-
tion databases and 4) literature databases. 
 A wide range of experimental methods used to study molecular 
interactions fall into two broad categories: i) Traditional methods of 
molecular biology focus on functionally proven interactions and try 
to gather fine details by studying the interacting partners with 
methods like x-ray crystallography [84, 85], nuclear magnetic reso-
nance [86, 87], often in conjunction with structural bioinformatics 
and/or conventional biochemical methods. Interaction data of a 
selected protein can be collected with methods such as affinity 
chromatography or coimmunoprecipitation [80, 88, 89]. These are 
typically “small-scale” (focusing only on very few molecules) and 
traditional biochemical methods. ii) Large-scale or system-level 
approaches can be used to collect a large number of interaction data 
in one experiment. One of the best known methods for detecting 
protein-protein interactions is the yeast two-hybrid system [90]. The 
underlying idea is that the expression of the reporter genes depends 
on two separate components, a binding domain (BD) and an activa-
tion domain (AD). If the two domains are indirectly connected via a 
protein-protein interaction, where one of the interaction partners is 
fused with BD and the other fused to the AD, then one can detect 
the reporter gene. This approach makes it possible to detect a large 
number of interactions by screening a certain protein against a 
DNA library representing all possible proteins the organism can 
have. Another system-level technique, proteomics can be used to 
study post-translational modifications or protein-protein interac-
tions via affinity purification coupled with mass spectrometry (AP-
MS). This approach can also be useful for detecting strong connec-
tion between proteins, thus exploring protein complexes [91]. High 
throughput methods are productive but there are several drawbacks 
and biases - among others, the number of erroneous interaction 
assignments can exceed 10 percent. 
 In addition to experimental methods, the body of databases 
available in other fields is also a source of information. While ex-
periments provide data on the biological entities themselves, the 
databases provide information on a wide variety of concepts. In this 
way we broaden the scope of molecular interaction data to “data 
networks” that allow us to link biological data to the results of fur-
ther scientific fields. For instance, a drug database such as Drug-
bank [92] provides information on chemical structures and their 
biological targets (proteins and genes) and/or the diseases. A data-
base of scientific publications, on the other hand, provides informa-
tion on a large class of descriptions (scientific abstracts) that are 
linked to each other by common keywords, authors, statements etc. 
 General purpose databases such as Uniprot [93], Ensembl [94] 
or GenBank [95] hold high quality and reliable information about 
proteins and genes (focusing on the amino acid or nucleotide se-
quence, protein names or descriptions, and citation information). 
Usually they provide data mining tools and APIs as well. 
 Drugbank database [92] is one of the most comprehensive and 
freely available, complex data source about drugs. Currently, it 
holds information about 2200 FDA approved and more than 6000 
experimental drugs. It also provides detailed information about the 
food-drug and drug-drug interaction information. The information 
was manually curated from web resources and published papers and 
has been continuously developed [96, 97]. It also provides data 
about drug mechanism of action and drug labels and ADMET (drug 
metabolism, absorption, distribution, metabolism, excretion and 

toxicity) profile, thus the drugcard of Drugbank could be rich 
source of text mining. 
 TTD database [98] is tailored to peptide molecules and its target 
information. It also includes information about diseases and drug 
combinations, however the last one is only available as excel tables, 
but not in a structured format, such as XML. Both Drugbank and 
TTD contains manually curated data. 
 STITCH [99-101] is an automatically created, integrated data-
base. It was created by using similar concepts as those of the 
STRING network. The database focuses on small molecules and 
their relations to other small molecules and proteins. Similarly to 
the STRING database there are various types of associations be-
tween the molecular entities. It mainly contains protein-chemical 
and chemical-chemical links based on text mining and other com-
plex predictions extended with chemical structure description 
strings. 
 The Drug Combination Database [102, 103] focuses on agents 
combined together to achieve some therapeutically advantage over 
single agent drugs. Drug regimens are typically used in treating 
cancer and other complex diseases. The database is partly based on 
the FDA orange book [104], clinical trials 
(https://clinicaltrials.gov/), and publications. It also holds informa-
tion about the individual drug components such as ATC codes, 
target and cross references. Furthermore, it also provides annota-
tions for drug combinations, such as possible mechanism of actions, 
interaction type, suggested doses, etc. 
 Drug side effects and drug interactions are often not covered in 
standard public databases. These kinds of data are available, for 
instance, in the SIDER database [105, 106], where the side effects 
are extracted (using controlled vocabulary such as UMLS [82]) 
from the drug labels. A well-maintained collection of drug side 
effects are provided by the Tatonetti Lab [107]. 
 Experimental results of protein-protein interaction measure-
ments are deposited in various primary databases such as the Data-
base of Interacting Proteins (DIP) [108], Biomolecular Interaction 
Network Database (BIND) [109], Molecular Interactions Database 
(MINT) [110-113], Biological General Repository for Interaction 
Datasets (BioGRID), Human Protein Reference Database (HPRD), 
IntAct Molecular Interaction Database [114]. 
 The DIP database contains large number of manually curated 
and reviewed interactions from numerous species [108, 115]. It also 
provides some services and visualization tools for the available data 
[116] and a cytoscape plugin (MiSink) [117]. Different evidences 
for the interactions were integrated and considered manually. 
 Human Protein Reference Database (HPRD) [118] contains 
various types of data about proteins such as post-translational modi-
fication, known or predicted disease associations, cellular localiza-
tion, tissue expression mainly from publications. The data also have 
been reviewed by scientific experts. The database contains informa-
tion about 30047 proteins and 41327 interactions among them. 
 Another important protein-protein interaction database is IntAct 
[114, 119-121] developed and maintained by the European Bioin-
formatics Institute (EBI), and is updated on regular basis. The 
interactions were partly curated from literature (14074 publication) 
in collaboration with the Swiss-Prot team or the data were 
submitted directly. They also use controlled vocabularies [122] 
(PSI-MI [123, 124], gene ontology [125] and NCBI taxonomy 
terms [126]) for annotating the interactions and the proteins. The 
database contains information about the interacting domains as 
well.  The information about the interactions is dispersed among dif-
ferent databases. Sometimes, these databases were cu-
rated/reviewed redundantly, so it is a natural need to make a stan-
dard data representation and data integration. The MiNTAct [127], 
Imex [128], Mentha [129] consortial databases integrate the mo-
lecular interaction data collected from 11 databases. 
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 STRING (Search Tool for the Retrieval of Interacting Genes) is 
one of the largest integrated protein interaction databases, which 
covers 66.9 Mio predicted and known interactions between proteins 
of 1100 organisms. The majority of the interactions (44.1 Mio) are 
predictions. The links between the proteins are some kind of asso-
ciations (among them several indirect ones) - not only physical 
interactions. The evidence types for the associations are: neighbor-
hood, gene fusion, co-occurence, co-expression, experiments, data-
bases, text mining, homology. Each type of association has a confi-
dence score, which is a probabilistic measure of the reliability of 
the link. The several types of links and their confidences can be 
combined into one association with one confidence score. 
 Transcription factor databases contain sequence motifs and 
genomic locations collected from genomic data using bioinformat-
ics methods. In the network representation of the database the nodes 
are DNA motifs linked to genomic locations. A typical example of 
transcription factor databases is Transfac, first published by Edgar 
Wingender’s group in 1994 [130]. The database is manually and 
continuously updated. The current release contains 7915 sites as-
signed to 6133 transcription factors. Further examples of this data-
base are given in Table 2. 
 Special types of molecular interactions are metabolic and signal 
transduction molecular interactions. One of the oldest pathway 
databases is KEGG [165]. However, the current version holds in-
formation related to pathways such as genome, diseases and related 
drugs. It provides a global map for each pathway. 
 Reactome [166], similarly to KEGG, is a comprehensive, 
manually curated, high quality pathway database with support of 
enrichment analysis and data visualization. 
 The Human Metabolome Database [167], however, concen-
trates on small molecule metabolites, and it is a rich source of bio-
marker discovery. It also provides enzymatic, biochemical and 
clinical data. 
 The signaling and metabolic pathways are often handled as 
separate entities, however, crosstalks and regulatory coupling exist 
between the pathways [168]. The Signalink [169] and NDEx data-
bases [170] not only offer manually curated and reviewed pathway 
information, but provide more context for pathway analysis such as 
transcriptional and post-transcriptional regulators. 
 Scientific literature databases contain data collected from scien-
tific journals using increasingly automated electronic submission 
links. Medline/Pubmed [171] is perhaps the best known representa-
tive of public scientific literature databases, it collects scientific 
abstracts from the publishers and provides them with a unified sys-
tem of keywords (mesh terms, reference [172]). In the network 
representation of the database, the nodes are scientific abstracts, the 
edges correspond to shared keywords, citation links (X cites Y), etc. 
The Medline database was first published in 1971 and it gained a 
very wide acceptance as it became available via the PubMed search 
facility in 1997. For machine learning purposes the database is 
downloaded and word combinations are identified via natural lan-
guage processing techniques in order to create new index tables. 
Further examples of this database are given in Table 3.  

4. FROM DATABASES TO DATA NETWORKS  
 One way to picture data network construction is to take a data-
base of cancer genes or proteins, and then cross-reference it to gen-
eral purpose sequence databases, drug-related databases etc. that 
will form a network among various types of entities allowing the 
cross querying of diverse biological databases in a unified manner. 
In practice, the construction of such a large network is prohibitively 
difficult, partly because of the incompatibility of ontologies, partly 
because of the sheer size of the network [83]. The current solution 
is to build partial networks that allow one to answer a few questions 
related to a given project. For instance, a network combining drug 

targets and protein-protein interactions will contain links (network 
paths) between proteins that are targeted by the same (or similar) 
drugs or drugs that act on proteins that are in physical contacts. 
Such a network allows one to find out, for instance, if two drugs are 
likely to act on related or interacting targets.  Construction of such 
data networks is largely facilitated by database frameworks capable 
to handle an arbitrary set of biological entities and relationships 
[182]. Physical or structural connections rely on the well-known 
fact that molecules practically never function alone but rather in 
association with other molecules such as ligands, lipids, amino 
acids, proteins and nucleic acids. On the one hand, there are struc-
tural associations between the elements that can be “strong” such as 
covalent bonding and tight associations in the cytoskeleton (micro-
filaments are polymers of G-actin proteins), or “transient” such as 
in the case of receptor-ligand associations. Understanding the na-
ture and the type of these relationships is crucial for interpreting 
complex biological phenomena such as disease mechanisms. As an 
example, the active forms of proteins are most often complexes 
assembled from various types of other proteins or other types of 
molecules such as RNA, DNA or small molecules. On the other 
hand, there are functional associations, such as between members of 
signaling pathways, transcriptional or metabolic networks. Func-
tional associations may not even involve structural interactions, for 
instance distant members of a metabolic pathway are functionally 
related. The common motif in these widely different scenarios are 
the links between molecules that can involve various structural and 
functional aspects. For instance, a transient interaction act in cata-
lyzing sequential steps within a metabolic network, or in a signaling 
pathway such as modifying the protein by adding phosphate group, 
etc. 
 Biological databases, including the above examples, contain 
annotated data items cross referenced to each other. In the mathe-
matical sense, such an entity can be pictured as a subgraph or sub-
network, in which some of the edges (cross references) point to 
other entities or subgraphs defined in other databases. For instance, 
a drug in the drug interaction database can be linked to another drug 
item within the same database, as well as to a disease defined in a 
medical ontology, a protein defined in Uniprot, etc. In principle, 
there is no problem to represent all such subgraphs in one large 
network which we term here a data network - but such a network 
would be prohibitively complicated for practical uses. One of the 
solutions is warehousing, wherein databases are stored as parallel 
items within the same computer and integrated concepts and new 
data types take care of appropriate matching of underlying entities 
and attributes, including the resolution of conflicts. The result of 
such a common representation can be best pictured as a network of 
data, where the original data items (say drugs, target proteins, dis-
eases, mutations) are represented in a common large network. For 
instance, a network combining drug targets and protein-protein 
interactions will contain links (network paths) between proteins that 
are targeted by the same (or similar) drugs or drugs acting on pro-
teins that are in physical contacts. In such a data network all data 
items (say drugs, target proteins, diseases, mutations) are connected 
via a variety of different links which makes processing complicated 
and time-consuming. As a practical workaround, one can construct 
a dedicated database tailored to a specific task, and that can be que-
ried with simpler tools [182]. 
 From the practical point of view, it is useful to distinguish com-
prehensive resources that aim to cover, for instance, all known 
genes and proteins and one selected type of interaction (say, regula-
tory connections). On the other hand, specialized resources concen-
trate on a selected species (Homo sapiens), or on a selected tissue 
type, or on a selected mechanism (signal transduction, or protein 
kinases). A few representative examples of databases are listed in 
Table 2. 
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Table 2. Cancer-related databases and resources. 

Database Description URL Refs. 

Comprehensive Databases and Resources 

TCGA The Cancer Genome Atlas http://cancergenome.nih.gov/ [131] 

CGP Cancer Genome Project http://www.sanger.ac.uk/research/projects/cancergenome/ [132] 

CPTAC 
Clinical Proteomic Tumor Analy-

sis Consortium 
http://proteomics.cancer.gov/programs/cptacnetwork 

[133, 
134] 

ICGC 
International Cancer Genome 

Consortium 
https://www.icgc.org/ [135] 

Data mining resources 

COSMICMart BioMart tool for COSMIC https://cancer.sanger.ac.uk/cosmic/login [136] 

G-2-O 
Linking genotype alterations to 

clinical outcome 
http://www.g-2-o.com/ 

Pmid: 
264749

71 

KM plotter 
Survival analysis using multiple 

gene chip datasets 
http://kmplot.com/analysis/ 

Pmid: 
200201

97 

IntOGen Biomart BioMart tool for IntOGen http://biomart.intogen.org/ [137] 

UCSC Cancer Genomics 
Browser 

A visualization and analysis tool 
specialized to cancer data 

https://genome-cancer.ucsc.edu/ 
[138, 
139] 

ICPS 
An Integrative Cancer Profiler 

System 
http://server.bioicps.org/ [133] 

NCG 4.0 Network of Cancer Genes http://ncg.kcl.ac.uk/ 
[140, 
141] 

CGWB The Cancer Genome WorkBench http://cgap.nci.nih.gov/cgap.html [142] 

CancerMA 
A web-based tool for analyzing 

microarray data  
http://www.cancerma.org.uk/information.html [143] 

ICPS 
An Integrative Cancer  

Profiler System 
http://server.bioicps.org/ [133] 

Databases of genetic variations in cancer  

COSMIC 
Catalogue of Somatic Mutations 

in Cancer 
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/ [144] 

CaSNP Cancer SNP data on CNAs http://cistrome.dfci.harvard.edu/CaSNP/ [145] 

DriverDB 
Cancer driver genes and mutation 

database 
http://driverdb.ym.edu.tw/DriverDB/intranet/init.do [146] 

IntOGen Integrative Oncogenomics http://www.intogen.org/ [147] 

MoKCa 
Mutations of Kinases in Cancer 

database 
http://strubiol.icr.ac.uk/extra/mokca/ [148] 

CGAP Cancer Genome Anatomy Project http://cgap.nci.nih.gov/ [149] 

Databases of genetic variations in cancer 

Mitelman Database 
Database of chromosome aberra-
tions and gene fusions in cancer 

http://cgap.nci.nih.gov/Chromosomes/Mitelman [150] 

CGC The Cancer Gene Census http://cancer.sanger.ac.uk/cancergenome/projects/census/ [151] 
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(Table 2) Contd.... 
 

Database Description URL Refs. 

Databases of epigenetic, proteomic and transcriptome variations in cancer 

CanProVar 
Human Cancer Proteome Varia-

tion Database 
http://bioinfo.vanderbilt.edu/canprovar/  

MethyCancer 
A database of human DNA meth-

ylation and cancer 
http://methycancer.psych.ac.cn/  

CellLineNavigator 
Expression profiles of cancer cell 

lines 
http://www.medicalgenomics.org/celllinenavigator/ [152] 

ITTACA 
Integrated Tumor  Transcriptome 
Array and Clinical data Analysis 

http://bioinfo.curie.fr/ittaca [137] 

PubMeth 
Cancer methylation database 

based on text-mining of PubMed 
http://matrix.ugent.be/pubmeth/ [153] 

OncomiRDB 
A database of experimentally 

verified oncomiRs 
http://bioinfo.au.tsinghua.edu.cn/member/jgu/oncomirdb/ [154] 

Cancer specific clinical and drug resources 

CancerDR Cancer Drug Resistance Database http://crdd.osdd.net/raghava/cancerdr/ [155] 

HPtaa 
The Human Potential Tumor 
Associated Antigen database 

http://www.bioinfo.org.cn/hptaa/ [156]  

CancerResource 
A resource of cancer-relevant 
compound and protein interac-

tions 
http://bioinf-data.charite.de/cancerresource/ [157] 

CanGEM Cancer Genome Mine http://www.cangem.org/ [158] 

DTP Anti-cancer agent database http://dtp.nci.nih.gov/docs/cancer/searches/standard_mechanism.html 
[159, 
160] 

ITTACA 
Integrated Tumor  

Transcriptome Array and Clinical 
data Analysis 

http://bioinfo.curie.fr/ittaca [137] 

Cancer-type specific resources and databases 

RCDB RCDB http://www.juit.ac.in/attachments/jsr/rcdb/homenew.html [161] 

curatedOvarianData 
Clinically annotated data for the 

ovarian cancer transcriptome 
http://bcb.dfci.harvard.edu/ovariancancer/ [162] 

PED 
Pancreatic Expression  

Database 
http://www.pancreasexpression.org/ [163] 

HLungDB 
Human Lung Cancer  

Database 
http://www.megabionet.org/bio/hlung/ [164] 

 

5. COMPUTATIONAL BACKGROUND 
 From the logical point of view, all interaction networks and 
data networks are graphs in which nodes are entities such as mole-
cules, diseases, i.e. biological, physical as well as conceptual ob-
jects, while the edges or links between nodes are relationships, such 
as molecular interactions, drug-disease connections, drug compati-
bilities etc. 
 A graph or network can be defined by a set of vertices and a set 
of edges. Two vertices are connected if they are linked to each  
 

other. For example, let the nodes be the cities and the edges be the 
roads. In this structure, there is an edge between two vertices if two 
cities are connected directly by a road. The graphs can be grouped 
by their different properties such as weighted or unweighted edges 
or by degree distribution, etc. [183]. 
 The network is an ordered set of vertices and edges, 

( , )G V E= , where V  is the set of vertices and E  denotes the set 
of edges. The two sets define the graph. In this paper the nodes are 
denoted by their indeces (i.e. k , kv   or kx ). 



Propagation on Molecular Interaction Networks Current Pharmaceutical Design, 2017, Vol. 23, No. 1    13 

Table 3. Representative examples of molecular and molecular interaction databases relevant to cancer therapy. 

 Contents URL V 

1 General purpose databases 

Uniprot Comprehensive database of protein sequences http://www.uniprot.org/ [93] 

RefSeq Human genome sequences http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/ [173] 

GenBank Comprehensive database of genetic sequences http://www.ncbi.nlm.nih.gov/genbank/ [95] 

Ensembl 
Comprehensive database of sequences with data 

mining tools 
http://www.ensembl.org/index.html [94] 

2 Drug-related databases 

DrugBank Drug data and drug-drug interactions http://www.drugbank.ca/ [92] 

Therapeutic Target 
Database (TTD) 

Therapeutic Target Database http://bidd.nus.edu.sg/group/cjttd/TTD_HOME.asp [98] 

STITCH Drug molecular interactions http://stitch.embl.de/ [99] 

DCDB Drug Combination Database http://www.cls.zju.edu.cn/dcdb/ [174] 

Offsides, TwoSides Drug adverse effects and drug-drug interactions http://tatonettilab.org/resources/tatonetti-stm.html [107] 

Drugs.com 
FDA approved drugs  linked to diseases and tar-

get proteins/genes 
www.drugs.com  

SIDER Drug adverse effects http://sideeffects.embl.de/ [105] 

3 Protein /protein interaction databases 

DIP 
Experimentally and manually validated  molecu-

lar interactions 
 

http://dip.doe-mbi.ucla.edu/dip/Main.cgi 
[108] 

HPRD (Human 
Protein Reference 

Database) 

Experimentally and manually validated  molecu-
lar interactions 

http://www.hprd.org/ [118] 

Intact Manually curated molecular interaction http://www.ebi.ac.uk/intact/ [114] 

MIntAct Manually curated Integrated database http://www.ebi.ac.uk/intact [127] 

STRING 
Protein/protein interactions as well as connections 

derived from other databases. 
http://string-db.org/ [175] 

4 Transcription factor databases 

TRANSFAC Transcription factors and binding sites http://www.gene-regulation.com/pub/databases.html [130] 

JASPAR Transcription Factor Binding Profile Database http://jaspar.genereg.net/ [176] 

DBD Transcription factor prediction database http://www.transcriptionfactor.org/ [177] 

5 Metabolic pathways 

KEGG Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/kegg/ [165] 

Reactome Curated Pathway Database http://www.reactome.org/ [166] 

MetaCyc Metabolic Pathway Database http://metacyc.org/ [178] 

HMDB Human Metabolome Database http://www.hmdb.ca/ [167] 
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(Table 3) Contd.... 
 

 Contents URL V 

6 Signal transduction databases 

NetPath Manually curated signal transduction pathways http://www.netpath.org/ [179] 

Signalink Manually curated signal transduction pathways http://signalink.org/ [169] 

NDEx Intergrated Network Database http://www.ndexbio.org [170] 

7 Mutation databases 

COSMIC Somatic mutations found human cancer http://cancer.sanger.ac.uk/cosmic [180] 

OMIM Disease gene and mutation database of humans http://www.omim.org/   

8 Literature databases 

PubMed/Medline PubMed/Medline http://www.ncbi.nlm.nih.gov/pubmed [181] 

EMBASE 
Biomedical and pharmacological bibliographic 

database 
http://store.elsevier.com/embase  

Scopus Bibliographic database of peer-reviewed literature http://www.scopus.com/  

 
 There are several simple properties and classification of graphs.  

 The degree of a node kv  is the number of edges being incident 

to the node and it is denoted by deg( )kv . 

 Indegree is the number of incoming edges, outdegree is the 
number of edges which leave the vertex (outgoing links). If we 
consider an undirected weighted graph, then the degree of a node 
will be the sum of the weight of incident edges.  
 If a number (a weight) is associated to the edges, we talk about 
weighted graph. The weight might mean cost or the strength of the 
chemical association between two molecules, lengths, etc. In our 
example the weight can be the length of the road between two set-
tlements.  

 Let x , y be two nodes of a graph ,x y V! , and ( , )e x y  the 

edge between node x , y , ( , )e x y E! . The graph is undirected if 

( , )e x y  has no orientation. For example, if there is a road from city 
A to city B, it means that we can travel from A to B and B to A as 
well, there is no distinction.  

 On the other hand, if ( , )e x y does have orientation, then the 

graph is directed. If ( , )e x y E!  it does not necessarily implicate 

that ( , )e x y E!  is true. 

 For practical uses, a graph is often represented as an adjacency 
matrix. It describes which nodes are connected and which are not. 
The adjacency matrix A  is an N N!  matrix, where N V= : 

1 vertex  and are  adjacent
0 otherwise

i j
ij

v v
a !

= "
#

                                         (1) 

 If the graph is weighted, then the entries of matrix A represent 
the weights of the edges. If the graph is undirected, then the matrix 
becomes symmetric. 
 The Laplacian matrix of a graph is often called admittance ma-
trix and it is also often used. The Laplacian matrix is an N N!  
matrix: 

deg( ) if 
1 if  vertex  and are  adjacent

0 otherwise

i

ij i j

v i j
L i j v v

=!
"= # $%
"&

         (2) 

The Laplacian matrix can be formulated by the matrices: 
L D A= !                                                                          (3) 
Where D  is a diagonal matrix and A  is the adjacency matrix of 
the graph. 

1 2( , , , )ND diag d d d= !                                                          (4) 

where
N

i ijj
d A= ! . If the graph is directed then the id  elements 

are the outdegrees of the node. Other possibility to generate the 
Laplacian matrix is if we normalize the entries of the adjacency 

matrix in the following way: 1N
iji
A =!  

1
mL I D A!= !                                                                          (5) 

Where I denotes the identity matrix with dimension N N! . 

 This work is concerned with the concept of network neighbor-
hood that cat can be defined as a subnetwork or subgraph around a 
selected node. Defining a subnetwork in a data-network can be 
carried out either by i) static or ii) dynamic methods.  
 i) Static methods use the data network “as is”, and simply omit 
those data that do not fulfill some criteria. For instance, we omit 
those data types and connection types that do not belong to the 
subnetwork. In this way, we can define tissue specific networks, or 
we can define the neighborhood of a gene as nodes and edges that 
are less than n  steps away within the network, using paths that 
contain only a given set of edges. For instance, a neighborhood of a 
potentially affected drug can be defined as a set of genes that are in 
the same metabolic or signaling pathway as the known drug target.  
 ii) Another, probabilistic way is to define a subnetwork as an 
effect that propagates from a central node such as a drug target. 
This is a dynamic approach since the nodes of the network get 
weighted in an iterative fashion during propagation, and at the end 
one can select those nodes that have weights exceeding some 
threshold value. We are concerned with two kinds of propagation 
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algorithms used in several fields of computer science, PageRank 
[184-186] and diffusion [187-190]. 

5.1. Page Rank 
 This algorithm is a special case of random walk on data net-
work: a walker starts at a certain data node, then randomly selects 
the next node from its neighbor, then moves there, and so on. In the 
case of PageRank the walker not only selects a neighboring node 
randomly, but it can move to any other nodes with a certain prob-
ability (“restart probability”). If the walker is only allowed to move 
to specific set of nodes or to the neighboring nodes, then this is the 
PageRank with prior algorithm [185, 186, 191]. If there is prior 
knowledge available about which nodes are more relevant then one 
can use this information to bias the original PageRank scores. For 
example, known drug targets, known diseases can be used as prior 
knowledge, in that case the walker initiated from these specific data 
nodes and in every iteration it goes back, restarts with a certain 
probability. More formally, first we define the prior probabilities 
as pr , then we use this information in the random walk in the fol-
lowing way:  

( )
1

1
( ) (1 ) ( , ) ( ) ( )

ind v
i i

u
P v p u v P v pr v! !+

=

" #
= $ +% &

' (
)          (6) 

( )iP v  denotes the personalized PageRank score at iteration step 

i , ,u v V!  and ( , )p u v  is the probability of traveling from node 
u  to node v . !  is the "restart probability" ( 0 1!" "  ). !  is the 
probability that we restart the random walk, meaning that we go to 
the starting nodes according to the prior probability distribution, 
thus biasing the results towards to the initial conditions. If 
( ) 1pr v N v V= ! " , then ( )iP v  is the original PageRank 

score at iteration step i . Other well-known algorithms based on 
random walks include k-step Markov [191], HITS [192], HITS with 
Prior [191]. 

5.2. Diffusion on Graphs 
 Diffusion is a physical metaphor used to model transport phe-
nomena on networks. In our case, we assign an imaginary quantity, 
such as “energy” or “drug action” to one node of the network - for 
instance the gene targeted by the drug - and then use an iterative 
process to compute how this quantity diffuses along the network. 
Let ix  be the quantity of the energy on node. It diffuses to the 

neighboring nodes with rate ija , so we can write that the energy of 

node i  is increased by 
1

N
ji jj
a x t!

="   between a small time inter-

val t! . The energy loss of the node is: 
1

N
ij ii
a x t!

=" . It leads to 

the following differential equation for ( )x t : 

( ) ( )dx t
Lx t

dt
= !                                                                          (7) 

The solution of this differential equation is: 

( ) (0)Ltx t e x!=                                                                          (8) 

where (0)x is the initial vector at time 0.  

 In a similar way to PageRank with prior it is possible to incor-
porate prior knowledge about the data network, i.e. relevant drugs 
to a disease by regularizing the Laplacian matrix [187]. The regu-
larization could be interpreted as alteration of diffusion process by 
i.) controlling (increasing or decreasing) the energy loss of a node, 
ii.) altering (increase or decrease) the input energy flow on certain 

edges, iii,) both of the above. All of the above alterations can be 
described with different regularization parameters, more formally 
the regularized Laplacian matrix defined as: 

,L QD WAWµ ! = "                                                          (9) 

Where the W and Q matrices are defined as follows: 

if  and x (0) 0
1 if  and x (0) 0
0 if 

i

ij i

i j
w i j

i j

! = "#
$= = =%
$ "&

                                       (10) 

0

0

if  and x 0
1 if  and x 0
0 if 

i

i
ij

i j
q i j

i j

µ! = "
#= = =$
# "%

                                       (11) 

Where ,t µ  and !  are the regularization parameters of the algo-
rithm.  
 The evaluation of an extremely large system of ordinary differ-
ential equations could be a challenging task, however by using 
sparse linear algebra and leveraging the sparseness of a typical data 
network, the solution could be computed in reasonable time. Instead 
of computing the matrix exponential one could focus on the ap-
proximation of the matrix-vector product gaining a significant 
speed up. The expression (0)Lte x!  could be approximated by us-
ing iterative methods such as Arnoldi algorithm [193-195].  

5.3. Background Probabilities  
 Both PageRank and diffusion methods require the estimation of 
a threshold value below which the nodes (and their respective 
edges) are omitted from the network neighborhood. This can be 
carried out by standard Monte-Carlo simulations in which a large 
number - say 10 thousand - of iterations are started from randomly 
selected nodes of the network, and values significantly - say 
p<<0.05 - higher than the background are selected as members of 
the neighborhood.  

5.4. Subnetwork Overlap Measures 
 Subnetwork overlap is a crucial concept of our approach. It 
indicates a part of a data network where interesting phenomena are 
expected, such as a drug synergism (in gene/drug networks) or a 
novel hypothesis (text-gene networks). From the practical point of 
view, a subnetwork is a graph that can be described in terms of its 
nodes, links or its substructures (known subgraphs). For instance, a 
node-based description can be the number of nodes, shared by the 
two subnetworks (network neighborhoods). Since network neigh-
borhoods can be of very different sizes, it is safer to normalize this 
value to the total number of affected nodes, which takes us to the 
well-known formula of the Jacquard or Tanimoto coefficient, which 
we use as a target overlap score (TOS). The TOS of two subnet-
works net1 and net2 is: 

1 2

1 2

1 2( , ) net net

net net

V V
TOS net net

V V

!
=

"
                                       (12) 

 This score can also be used for connections instead of nodes, 
and can be transformed into a weighted form. Namely, some algo-
rithms assign weights to the nodes (edges). In such cases we can 
represent intersection and union by the sum of weights calculated 
for the participating nodes (edges) which then leads to the weighted 
variant of the overlap score. A probabilistic weighting is especially 
important as it is generally applicable. In such a case the weight 
assigned to a node can be the significance of the node (edge) de-
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rived from Monte-Carlo simulations, in this case the overlap coeffi-
cient will have a statistical interpretation.  
 Another approach to characterize the neighborhood overlap is 
to search for interesting subgraphs. For instance, a subnetwork can 
be considered interesting if it substantially overlaps with a specific 
metabolic or signaling pathway. In other words, neighborhood 
overlap can be considered „interesting” if it overlaps with a path-
way that has not been considered, or vice versa, a pathway of bio-
logical interest. Sophisticated questions can be answered in this 
manner: if a drug perturbs pathway X, we can systematically test 
pairwise drug combinations whose overlaps perturb the same path-
way but neither participant does in itself. In this way we can look 
for drug combinations that potentially replace a given single phar-
macon. 

5.5. Prediction of Drug Combinations Via a Target Overlap 
Score 
5.5.1. Principle  
 In the past few decades the number of novel marketed drugs has 
fallen much below the expectations despite the growing resources 
invested in this area [196-198]. Multi-target drugs and drug combi-
nations have been proposed as a general strategy to change this 
trend [199, 200]. Combinations of approved pharmacons are an 
especially attractive solution since they have higher therapeutic 
success, less toxicity and lower development costs as compared to 
single pharmacons [201]. There are a large number of methods and 
protocols for identifying novel combinations, and as a result, the 
number of approved drug combinations is on the increase, even 
though most of the approved combinations were established by 
experience and intuition [202, 203]. 
 Given the fast growth of drug-related databases, network 
neighborhood analysis seems a promising avenue for predicting 
drug combinations for experimental testing. The underlying as-
sumption is that perturbations generated by the pharmacological 
agents propagate through an interaction network to other targets 
that constitute what we call a propagation neighborhood. Overlaps 
of multiple propagation neighborhoods can point to unexpected 
synergies at target genes that are not in the immediate vicinity of 
the original drug targets.  Pinpointing synergies is conceptually 
different from the traditional classification of drug interactions as 
positive or negative. Namely, the traditional view pharmacology 
concentrates on a hypothetical single target, a receptor, and two 
drugs can mutually increase or decrease the effect on this receptor. 
In the clinical practice, approved drug combinations (positive inter-
actions) are those that exert some positive therapeutic effect, while 
the terms “drug interactions” or “interacting drugs” refer to delete-
rious side effect emerging when two drugs are administered to-
gether -  i.e. the clinical view defines positive or negative with re-
spect to the patient. The network view, on the other hand, defines 
synergy as the emergence of additional targets. In this view, the 
positivity or negativity of the effect is not included, only the fact 
that the joint effect of two pharmacons will reach new regions of 
the network. Cancer chemotherapy represents a special case, che-
motherapeutic agents target all dividing cells in the body i.e. their 
effect is negative in the biochemical sense, while positive for the 
patient since tumor cells that proliferate fast will be selectively 
damaged. In this section we show that the network neighborhood 
analysis can pinpoint useful combinations for cancer therapy. For 
the analysis we defined the network as a combination of protein-
protein interactions included in the STRING database, and drug-
protein interactions included in the STICH, Drugbank TTD and 
JBioWH database. The generation of such a dataset is schematically 
shown in Fig. (1). In addition to protein-protein associations, the 
combined network links proteins and pathways targeted by the 
same drugs. 

 

 

 

 

 

 

 

 

 
Fig. (1). The network-interaction hypothesis. The effects of two drugs 
(Drug1, Drug2) reach their imminent targets first (arrows) and the effects 
will then propagate to their network neighborhoods (subnetworks) indicated 
in red and green, respectively. Targets in the overlap are affected by both 
drugs, and we suppose that drugs affecting a number of common targets will 
influence the effects of each other. The overlap is quantified as the propor-
tion of jointly affected targets within all affected targets. 
 

The principle of network overlap analysis is shown in Fig. (1). We 
defined network neighborhood as the set of genes that are signifi-
cantly perturbed by a drug. This was determined by Monte Carlo 
simulation, by repeating the diffusion process 10,000 times and 
determining the nodes (genes) whose activity changed at a chosen 
level significance (typically 0.05p < ). As a numerical measure for 
drug-drug interaction we define the Target Overlap Score (TOS) as 
the Jaccard coefficient (similarity measure between sets) calculated 
between the neighborhoods significantly affected by a pair of drugs. 
TOS is 1.00 for a pair of drugs affecting the same targets and 0.00 
for agents that do not significantly affect any target in common.  

DCMS  , the perturbation of the i th drug iD  can be expressed as a 
vector: 

,( ) (0)L t
DCM iS D e xµ !"=                                                        (13) 

Where the j th entry of (0)x  nonzero if it is targeted by the drug: 

1 if protein  is drug target
(0)

0 otherwisej

j
x

!
= "
#

                       (14) 

The j  th element of (D )DCM iS  measures the disruption effect of 

Di  on protein j . 

We used the parameters 0.1µ =  and á 0.005=  throughout this 
study.  

Then the network neighborhood or subnetwork of drug Di , iD
net  

consists of the significantly perturbed network elements: 

{ }| , 0.05
i iD i i vnet v v V p= ! <                                        (15) 

The target overlap score is calculated as in equation 13. 
 Furthermore, this measure can be generalized to handle non-
binary drug combinations. For this purpose we determined the 
number of nodes that were significantly perturbed by at least two 
drugs, divided by the size of the affected subnetwork.  
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 This coefficient is zero if the neighborhoods do not overlap and 
1.0 if they are identical. Identity is in fact a problem since a drug’s 
overlap with itself is not meaningful. To avoid this problem, the 
drugs participating in the analysis should be prescreened and drugs 
with identical targets should be excluded from the analysis, either a 
priori, or by omitting their combination from the results. 
The process of calculation is as follows: 
Calculating the perturbation values for each drug. 
Assessing the significance of each protein for each drug. 
Defining the subnetwork of the drugs. 
Computing the TOS values for the drug combinations. 
5.5.2. TOS is Correlated with the Strength of Both Beneficial and 
Deleterious Drug Combinations 
 For the evaluation we chose a simple ranking test, i.e. we com-
pared the TOS value calculated for known drug pairs with the TOS 
of randomly chosen drug pairs and calculated an AUC value for the 
ranking using ROC analysis [204]. 
 It is noted that strong interactions are expected to give AUC 
values close to 1.0 while AUC values for randomly selected pairs 
are expected to be around 0.5. In the present study we used the 
STRING interaction network [4] and the first question we asked 
was whether or not the evaluation system fulfils these fundamental 
criteria. For this purpose we used the database of FDA-approved 
drugs [96] and generated all possible binary combinations. Trivial 
interactions (drugs acting on the same target and drug pairs with 
identical or nearly identical chemical structures) as well as drug 
pairs known to have positive or negative effects were omitted from 
the analysis which left 733542 pairs. This evaluation gave an AUC 
value of 0.48 (Fig. 2, left) which is very close to the random value 
of 0.5 This finding thus shows that, given the TOS algorithm ap-
plied to the STRING network, the randomly chosen FDA-approved 
drug pairs indeed behave as random. We have to mention that the 
randomly selected drug pairs may have contained cases in which 

the interaction has not been discovered yet. A related question is 
that of drugs having identical targets. These should by definition 
give a TOS value of 1.00, and we found 271 such drug pairs. Also, 
drugs having closely identical chemical structures are likely to af-
fect similar targets. We found 179 such drug pairs but only 8 of 
these were common with the previous subset. The comparison 
shows that both subsets give high TOS values which will statisti-
cally bias the comparison if included either in the positive or in the 
negative dataset of non-interacting drugs. So, for the statistical 
evaluation described below we left out these drug pairs from both 
datasets. 
 Next, we wanted to test whether or not TOS can help to identify 
the drug pairs that are empirically known to have a beneficial or 
detrimental effect. In pharmacology, two drugs are called "interact-
ing" if their joint administration has a detrimental effect [205]. 
Drug pairs listed at http://drugs.com are classified into three groups 
according to the severity of the negative effects, such as major, 
moderate and minor. In the selection we considered only cancer-
related drug pairs i.e. those in which one of the agents was or was 
proposed to be used in treating cancer which resulted in 10323 
strongly, 92958 moderately and 17193 weakly interacting drugs 
from the database, denoted as sets A, B and C, respectively (Table 
4). The results show that the interacting drug pairs show remarkably 
higher AUC values than the randomly selected drug pairs, moreo-
ver these values qualitatively follow the strength of the interaction 
(Fig. 3).  Namely, strongly interacting drug pairs show substantially 
higher AUC values than the moderately interacting ones etc. 
 We also tested drug pairs that are known to have a beneficial 
effect when administered together. In pharmacology, the term “drug 
combinations” refers to drugs that are administered together be-
cause they have an empirically known beneficial therapeutic effect. 
Such therapeutically useful drug combinations are included in the 
Drug Combination Database (DCDB) [174] as well as in the Thera-
peutic Target Database TTD [207], along with the specific mecha-
nism of their interaction. Using the same filtering criteria we se-
lected 293 combinations (dataset D, Table 4). The results in Fig. 
(2), right show that therapeutic drug combinations yield AUC val-
ues substantially different from the random combinations.  
Next we carried out the same comparisons for cancer related drugs. 
In this case the datasets were naturally smaller, we found 817 
strongly, 5700 moderately and 241 weakly interacting drugs from 
the database, and denoted them as sets E, F and G, respectively 

 
 

Fig. (2). Ranking performance of the TOS score on known drug interactions and therapeutic combinations. The ranking performance was measured via ROC 
analysis The standard deviation of AUC values (not shown) are between 0.0001 and 0.006 for the different datasets. Note that the tendencies of drug combina-
tion groups are the same between cancer-related and not cancer-related drugs. Also, combinations of drugs with identical targets or with similar chemical 
structures give high TOS scores. These combinations were left out from the statistics of the other groups so they do not influence the AUC values of the other 
groups. 
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(Table 4). The set of beneficial combinations included 33 combina-
tions specifically suggested for cancer (dataset H, Table 4). The 
results presented in Fig. (3) shows the same general tendencies as 
seen in the case of all drug combinations (Fig. 3). Namely, i) the 
known interactions are substantially different from the combinations of 
non-interacting drugs; ii) the AUC values of minor, moderate and 
strong, detrimental interactions follow the correct order i.e. the 
stronger the interactions the higher the AUC values; and iii) the 
values of beneficial, therapeutic combinations are also substantially 
different from the average and the AUC value of 0.91 in cancer-
related combinations can be considered especially convincing. iv) 
in both panels of Fig. (3), the beneficial interactions show higher 
AUC values. We have no ready explanation for this phenomenon, 
however we speculate that one of the reason could be that therapeu-
tic combinations are usually optimized via careful clinical studies. 
5.6.2. TOS Shows Correlation with the Outcome of Clinical Trials 
 In a clinical trial (also called „interventional study”), patients 
receive specific interventions according to a well-defined protocol 
[208]. In our case, trial data were collected from 
http://clinicaltrials.gov and consisted of studies in which combina-
tions included trastuzumab either as an interaction partner or as a 
basis for comparison and only those clinical scores were used that 
were collected according to RECIST [209]. The list of drugs tested 
in clinical trials included bevacizumab, capecitabine, carboplatin, 
cyclophosphamide, docetaxel, doxorubicin, epirubicin, fluorouracil, 
gemcitabine, ixabepilone, lapatinib, oxaliplatin, paclitaxel, pertu-
zumab, sunitinib.  
 First we analyzed the statistical dependence between the clini-
cal outcomes and the TOS values calculated for the drug regimens 
used for the treatment. Several regimens included more than two 

agents, such as trastuzumab and three additional drugs, A, B and C. 
Spearman's rank correlation coefficient was used for quantifying 
the statistical dependence between the TOS score and the clinical 
outcome measures. The TOS score shows substantial correlation 
with the overall response (OR) (r=0.64; p=0.0028). Furthermore, 
the overall survival rate (OSR) and Confirmed Clinical Benefit 
(CCB) correlate well with TOS (r=0.87; p=0.017 and r=0.84; 
p=0.0021). 
 In conclusion, the data suggest that there is a significant corre-
lation between the TOS scores and the outcome of clinical trials. 
6. Prediction of Cancer Biomarkers by Integrating Text and 
Data Networks  
 Predicting disease biomarkers consists in suggesting genes 
potentially associated with a disease. Traditionally, gene-disease 
associations are based on experimental data that have been vali-
dated by careful clinical studies. With the emergence of high-
throughput techniques it is possible to experimentally compare the 
behavior of all human genes in healthy and diseased states. How-
ever, the evaluation of such lists is not simple [210]. Computational 
methods of “gene prioritization” were developed for this purpose 
[211]. Most of the methods combine the new experimental data 
with a background database containing information on co-
occurrence, functional annotations, protein-protein interactions, 
pathways, and gene expression. Briefly, we can view new experi-
mental data as numerical scores assigned to genes, and the back-
ground database as a network of genes in which the links are de-
fined by one of the methods mentioned above. In the process of 
gene prioritization, the experimental scores are updated using the 
gene network data and the genes are re-ranked based on the new 
scores. Updating of scores can be based on graph distance (shortest 

Table 4. Datasets. 

 Dataset Original size Size after filtering1 Data source 

I. Datasets of all drugs 

Detrimental drug interactions2     

Severe A 21831 10323 Drugs.com 

Moderate B 112976 92958 Drugs.com 

Minor C 13143 17973 Drugs.com 

Beneficial drug interactions3, 4 D 429 293 DCDB, TTD 

II. Cancer-related datasets 

Detrimental drug interactions2     

Severe E 1053 817 Drugs.com 

Moderate F 6857 5700 Drugs.com 

Minor G 273 241 Drugs.com 

Beneficial drug interactions3, 5 H 55 33 DCDB, TTD 

III. Negative datasets used in ROC analysis 

 All FDA-approved drugs6 I 848253 733542 Drugbank 

Random drugs7 J 427350 426425 - 
1We filtered the available drug pairs by leaving out the drug combinations where the components have exactly the same targets, or the components were structurally similar. The 
drugs with no available targets were also discarded; 2Taken from Drugs.com (November 11, 2013); 3Taken from the Drug Combination Database (March 8, 2012) and the Therapeu-
tic Target Database (July 23, 2012); 4All approved drug combinations were included; 5All approved drug combinations that are used in cancer treatment. 6We made all possible 
binary combinations of FDA-approved drugs (taken from DrugBank, 12th September of 2012), and then leaved out all pairs that were listed as beneficial or detrimental combina-
tions. 7We constructed random drugs corresponding to the number of targets of all individual drugs. We generated 25 random drugs for each target count [37]. From this pool we 
made all the possible binary combinations. In each case, we randomly selected a negative set of the size which was 5 times greater than the positive dataset [206]. 
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path), on a propagation algorithm such as the popular PageRank 
[212] or on diffusion methods [190], for example. The resulting 
methods differ in the kind of score updating methodology, the 
background database used, and most importantly, the size of the 
data they can handle. Relatively few methods can select genes from 
entire genomes or accept input data on all genes. For instance, it is 
customary to restrict the scope of candidate genes to a small region 
of the chromosome using methods of linkage analysis or to use 
known disease genes as a training set. One of our goals is to use 
approaches analogous to the methods of gene prioritization in order 
to further increase the sensitivity of hypothesis generation. 
 Text mining has been successfully applied to finding various 
gene-disease associations [213], such as suggesting disease marker 
genes from MEDLINE records and ranking (prioritizing) genes 
based on biomedical literature [214]. Reviews of the earlier work 
are found in [215] and [216]. More recently, Hristovski and associ-
ates combined DNA microarray data and semantic relations ex-
tracted from MEDLINE, for generating novel hypotheses [217]. 
Frijters and colleagues also presented an application of their litera-
ture mining method in an open-ended retrieval of hidden relations 
for hypotheses in terms of gene-disease, drug-disease and drug-
biological process associations [218].  

6.1. Theory 
 In the framework of knowledge discovery, a biomarker is a 
hypothesis generated from the evaluation of scientific literature. In 
the ideal case, hypothesis generation leads to a list of hypotheses 
that can be ranked according to various criteria. Generally speaking, 
a hypothesis is a previously unknown, indirect connection between 
term A (disease) and term C (cause). Knowledge discovery posits 

that such a hypothesis is validated if both the cause and the disease 
are related to the same set of intermediate concepts, which is the 
basis of the well-known ABC model of Swanson. Hypothesis gen-
eration is a different task as it seeks to identify novel hypotheses 
rather than confirming one. The RaJoLink model of Petric et al 
[219] approaches this problem by looking at “rare terms” i.e. con-
cepts sporadically appearing in the literature that may be linked to 
common, hitherto unknown causes. In an ideal case, the causes 
emerging in this manner can be ranked by importance [3]. The 
same principle can be used to select potential biomarkers. In this 
case, the starting phenomenon is a disease (i.e. the same as before) 
but the terms we are looking at are the names or symbols of genes 
or pathways. The approach presented in this section relies on the 
supposition that genes (pathways) sporadically mentioned in the 
scientific literature may point to a set of genes (pathways) that is 
the cause of the disease, so mutations in these genes (pathways) 
may then be used as biomarkers for the disease.  The goal of this 
section is to show how a common data network of scientific ab-
stracts and protein-protein interactions can be used to automate this 
process. Namely, in the data network described in the previous 
sections diseases are linked to genes (as well as drugs). In this sec-
tion, we add a new type of link, “co-occurrence”, denoting that a 
disease and a gene are mentioned in the same scientific publication. 
On such an enhanced network, the problem of hypothesis genera-
tion can be defined as a neighborhood-overlap problem as shown in 
Fig. (4). In this section we used ovarian cancer as the test case. 

6.2. Constructing a Data-Network with Molecular and  
Literature-Based Links 
 The document sets in our experiments were acquired from the 
MEDLINE database through its PubMed system [181] using the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Performance of combined predictors on different training sets. The short titles TOS, TOS+ATC, TOS+GO or TOS+GO+ATC refer to the combina-
tion used. The curves represent the AUC value distribution (as a probability density function) obtained via a kernel density estimation (KDE) approach. The 
data were obtained by a 5 fold cross-validation procedure. Note that the distributions are quite similar to the TOS values (top left) which indicates that TOS 
effectively captures the drug combination phenomenon.  
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Entrez Programming Utilities [220]. Each document set consisted 
of citations that comprised of abstracts obtained from PubMed by 
executing boolean queries. The target sets of texts were restricted to 
abstracts of articles, because unlike the majority of full texts, they 
are freely available online in XML format.  
 The benchmark datasets were designed to test whether or not a 
method could efficiently predict that a gene plays a certain role, 
which was then experimentally confirmed later. For this test, we 
needed a corpus of abstracts published before a certain biological 
role was confirmed. We chose ovarian cancer as the model disease 
and used a recently published list of 37 ovarian cancer biomarker 
(OC biomarkers) genes [221] (Table 5) as test cases. We then 
wanted to determine if the relationship between these genes and 
ovarian cancer could have been predicted on the basis of literature 
published beforehand. In order to have a sufficient number of genes 
in the analysis, we selected the year 2007 as a separating line. A 
total of 10 OC biomarkers have been proposed after this date.   
 OC biomarker abstracts were selected using the search phrase: 
(biomarker OR biomarkers OR marker OR markers) AND (“cancer 
of ovary" OR "ovary cancer" OR "cancer of the ovary" OR "ovarian 
cancer" OR "malignant neoplasm of ovary" OR "malignant ovarian 
neoplasm" OR "malignant tumor of ovary" OR "malignant tumor of 
the ovary" OR "malignant neoplasm of the ovary" OR "malignant 
ovarian tumor" OR "malignant tumour of ovary" OR "ovarian ma-
lignancy" OR "ovarian carcinoma"). This search resulted in 4,878 
abstracts published before the year 2007. We defined this set as the 
OC biomarker test corpus. Separately, 26,979 abstracts about the 
known OC biomarker genes [221] (Table 5) published up until May 
14th 2012 were obtained and these formed the OC biomarker pre-
diction corpus. We used the HGNC gene symbols, names and their 
synonyms (downloaded on December 23rd 2011). Such HGNC 
nomenclature was then applied to the terms that we automatically 
extracted from collections of MEDLINE abstracts.  

6.3. Principle of Evaluation 
 From the mathematical point of view, genes selected by text 
mining analysis can be viewed either as an unranked set of gene 
names or as a ranked list wherein genes are characterized by their 
names as well as by a numerical score. We used two kinds of meth-
ods for re-ranking the genes selected by the enhanced RaJoLink 
rare-term algorithm described here: a) standard gene prioritization 
methods available via gene prioritization web servers (ToppGene 

and Endeavour) [278, 279] and b) propagation-based methods that 
were implemented on the STRING database [280], as briefly de-
scribed in section 5.1 and 5.2. 
 More specifically, the PageRank iteration was initiated from the 
known disease associated genes, biomarkers, thus the vector pr  is 
defined as: 

1 if protein i is a known OC biomarker

0 otherwise
ipr M

!
"= #
"$

       (17) 

Where M  is the number of validated biomarkers. 
Similarly, the diffusion process was initiated from known bio-
marker genes: 

1 if protein i is a known OC biomarker
(0)

0 otherwiseix
!

= "
#

       (18) 

6.4. Testing the Methods on the Rediscovery of Known OC 
Biomarker Genes 
 We sought to establish whether the genes that have been pro-
posed as OC biomarkers after 2007, could have been predicted on 
the basis of prior literature evidence and knowledge. We considered 
genes suggested as biomarkers as those that co-occurred with the 
term “marker” or “biomarker” in MEDLINE abstracts. We used 
MEDLINE abstracts, MeSH and HUGO terms published before 
2007 and used standard propagation algorithms (PageRank or diffu-
sion kernel methods [190, 212]) for re-ranking the results, using the 
network of the STRING database, release version 6.3 (in use from 
December 12, 2005 to January 15, 2007). In the re-ranking step we 
could not use the gene-prioritization servers as the current servers 
contain information entered after 2007.  
 Out of the 37 ovarian cancer genes listed in Table 5, 27 are 
mentioned together with “marker” or “biomarker” in MEDLINE 
articles published before 2007. The remaining 10 genes (our target 
genes) are: BCL2L1, CCND3, E2F1, E2F2, E2F4, ERCC1, IL7, 
MET, MMP9, WFDC2. Six genes were identified with the en-
hanced RajoLink method. For five of these six genes, the ranks 
could be substantially improved by propagation/re-ranking (Table 
6).  
 

 

 

 

 

 

 

 

 

 

Fig. (4). The principle of biomarker prediction using terms rarely associated with cancer and a set of validated genes. A “hypothesis” is a gene worth to be 
experimentally tested. Such a gene (network node) is expected to rarely - but appreciably - associate with cancer terms in scientific papers (light red area), but 
has no, or no strong evidence for cancer involvement (light green area). In the picture, such genes are located within the intersection of the light-shaded areas, 
and the ones of interest are identified by ranking them according to a suitable criterion. 
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6.5. Prediction of New OC Biomarkers 
 We wanted to establish if any putative gene biomarkers might 
exist for ovarian cancer on the basis of currently available pub-
lished knowledge. To achieve this an experiment similar to the 
previous one was completed where i) the data input was the ovarian 
cancer prediction corpus which includes abstracts about the known 
OC biomarker genes [221] (Table 5) published up until May 14, 
2012 and current versions of STRING, MeSH, HUGO nomencla-
ture data, and ii) the propagation step was carried out with the stan-

dard propagation algorithms (PageRank  or diffusion kernel meth-
ods [190, 212]), and also with the gene prioritization servers 
ToppGene and Endeavour [278, 279].   It was apparent that a num-
ber of well-known cancer-related genes appear in the top of these 
lists (data not shown).  
 For a better overview, we compared the top of the lists and 
picked 10 genes that ranked highly in most of the rankings (Table 
7). These include RUNX2, SOCS3, BCL6, PAX6, DAPK1, 
SMARCB1, RAF1, E2F6, P18INK4C (CDKN2C), and PAX5. 
These are all cancer-related genes that have not previously been 

Table 5. List of ovarian cancer biomarker genes published before May, 2012. 

 Symbol Gene  Symbol Gene  Symbol Gene 

1 CA125 CA 125 [222-225] 14 P16 p16 [226, 227] 26 BIRC5 Survivin [228] 

2 KRT19 Cytokeratin 19 [229, 230] 15 CDKN1A p21 [231-233] 27 TERT hTERT [234] 

3 KLK6 Kallikrein 6 [235] 16 CDKN1B p27 [236-239] 28 EGFR ERBB1 [240, 241] 

4 KLK10 Kallikrein 10 [242] 17 RB1 pRB [243, 244] 29 ERBB2 ERBB2 [245] 

5 IL6 Interleukin-6 [246] 18 E2F1 E2F1 [247] 30 MET c-Met [248] 

6 IL7 Interleukin-7 [249] 19 E2F2 E2F2 [250] 31 MMP2 MMP-2 [251] 

7 IFNG γ-interferon [252] 20 E2F4 E2F4 [250] 32 MMP9 MMP-9 [253] 

8 FAS sFas [254, 255] 21 TP53 p53 [256, 257] 33 MMP14 MT1-MMP [258] 

9 VEGFR VEGFR [259] 22 TP73 p73 [260] 34 WFDC2 
(HE4) 

Epididymis protein 4 [261-263] 

10 CCND1 Cyclin D1 [231, 264] 23 BAX Bax [265, 266] 35 SERPINB5 Maspin [267] 

11 CCND3 Cyclin D3 [268] 24 BCL2L1 Bcl-xl [269] 36 BRCA1 BRCA1 [270] 

12 CCNE Cyclin E [271-274] 25 BIRC2 cIAP [275] 37 ERCC1 ERCC1 [276] 

13 P15 p15 [277]       

 
Table 6. List rediscovery of genes suggested as OC biomarkers. 

Rank 

Gene symbol Gene 
Year when first men-

tioned as ovarian cancer 
prognostic marker Original RaJoLink New RaJoLink 

New RaJoLink + 
PageRank 

New RaJoLink + 
Personal Diffusion 

BCL2L1 Bcl-xl 2007 NA 337 5 10 

CCND3 Cyclin D3 2007 NA 165 43 31 

E2F1 E2F1 2008 NA NA NA NA 

E2F2 E2F2 2007 69 140 36 3 

E2F4 E2F4 2007 39 16 NA NA 

ERCC1 ERCC1 2007 NA NA NA NA 

IL7 Interleukin 7 2007 54 297 82 80 

MET c-Met 2007 NA NA NA NA 

MMP9 MMP-9 2007 44 86 22 49 

WFDC2 Epididymis protein 4 2009 NA NA NA NA 
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proposed as OC biomarkers and have not been mentioned in litera-
ture sources together with ovarian cancer. These may represent 
genetic markers upon which hypotheses can be formulated in rela-
tion to ovarian cancer. 

7. DISCUSSION AND CONCLUSION 
 The idea underlying network neighborhood analysis is seem-
ingly simple: a concept, such as a molecule or a pathway repre-
sented in a biological database, is not a single object but a subnet-
work of interrelated concepts and relationships. From this it trivi-
ally follows that subnetworks can overlap with each other so we can 
significantly broaden the scope of associations between concepts 
and extending the analysis of hidden, implicit links which is the 
essence of new discoveries What is not trivial is how we can design 
a network in which associations will be useful, in other terms, we 
can answer practical questions. The suggestion put forward in this 
chapter is that we construct a data network dedicated for a given 
purpose. Namely, if we want to query associations between dis-
eases, drugs and drug target, we construct a network consisting of 
these items, by combining, say drug databases (STITCH [101], 
DrugBank [97], TTD [207], DCDB [103]), interaction databases 
(STRING [4], IntAct [127]), disease databases (OMIM [285]) and 
various resources such as ontologies [81, 82] and manually curated 
datasets.  Or, if we want associations based on text mining, we in-
clude a network composed of our useful terms (say, diseases, target 
genes) and text-mining based links between them. Such dedicated 
data networks take some expertise to construct, but the time of net-
work construction and analysis are not prohibitively long. What is 
questionable, of course, is how good our data are. Here we have no 
guarantees for success, just the hope that the body of databases and 
the number of new database types will continue to increase as fast 
as it does today, and that novel types of integration methodologies 
will emerge. Currently, a bottleneck in the construction of data 
networks is data heterogeneity, namely the concepts are not uni-
formly defined across the various databases we want to integrate in 
a network. With these caveats in mind, we consider our approaches 
as pilot studies into two seemingly unrelated directions, the prioriti-
zation of drug combinations, and prediction of potential biomark-
ers.  
 In drug combinations we showed that molecular interaction data 
can successfully predict known combinations of chemotherapeutic 
agents used to treat breast cancer. In particular, we could show that 

a simple network overlap measure is well correlated with the inten-
sity of positive and negative drug interactions as well as with clini-
cal data. In biomarker prediction we showed that novel biomarkers 
can be prioritized using a network built from text mining data as 
well as ovary cancer data. In particular, we found that new bio-
markers discovered in a given period of time are correlated with 
genes sporadically emerging in the oncological literature of the 
previous years. Since hypothesis generation based on genomic data 
is a key problem in life sciences today, this approach can also be 
used in other fields. The limitations of this approach follow by the 
probabilistic nature of the answers. For instance, we considered the 
prediction of a drug combinations successful if the successful com-
bination was in the toplist of say 10 best hits. Since the number of 
potential drug candidates is very high, such a ranking can be con-
sidered a partial success, since one can narrow down the experi-
ments to a relatively small number of cases. On the other hand, we 
expect that semantic pruning of the network may improve the effi-
ciency of predictions in the future. Namely, one may design useful 
rules regarding which links of the networks should be omitted from 
the analysis. In such a manner the size and complexity of the net-
work could be decreased so more sophisticated algorithms could be 
used for the analysis. Seen the efforts invested into biomedical on-
tologies, we can trust that this development will broaden the scope 
of the network analysis technique proposed here.  
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