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Abstract

Background: Bacterial species present in multispecies microbial communities often react to the same chemical
signal but at vastly different concentrations. The existence of different response thresholds with respect to the same
signal molecule has been well documented in quorum sensing which is one of the best studied inter-cellular
signalling mechanisms in bacteria. The biological significance of this phenomenon is still poorly understood, and
cannot be easily studied in nature or in laboratory models. The aim of this study is to establish the role of
differential signal response thresholds in stabilizing microbial communities.

Results: We tested binary competition scenarios using an agent-based model in which competing bacteria had
different response levels with respect to signals, cooperation factors or both, respectively. While in previous
scenarios fitter species outcompete slower growing competitors, we found that stable equilibria could form if the
fitter species responded to a higher chemical concentration level than the slower growing competitor. We also
found that species secreting antibiotic could form a stable community with other competing species if antibiotic
production started at higher response thresholds.

Conclusions: Microbial communities in nature rely on the stable coexistence of species that necessarily differ in
their fitness. We found that differential response thresholds provide a simple and elegant way for keeping slower
growing species within the community. High response thresholds can be considered as self-restraint of the fitter
species that allows metabolically useful but slower growing species to remain within a community, and thereby the
metabolic repertoire of the community will be maintained.

Reviewers: This article was reviewed by Michael Gromiha, Sebastian Maurer-Stroh, István Simon and L. Aravind.

Keywords: Microbiome, Quorum sensing, Swarming, Self-restraint, Response threshold, Antibiotic production,
Agent-based modelling

Background

Bacteria are the most widespread life forms on Earth that

populate every habitat, including the surfaces of the hu-

man body. [1–3]. In most cases bacterial cells live in large

multispecies communities in which they compete for nu-

trients and space, but at the same time they also cooperate

with each other via chemical materials secreted into the

environment. One well-studied mechanism whereby bac-

terial cells can communicate and cooperate with each

other is quorum sensing (QS) [4, 5]. QS is based on the

ability of cells to respond to a chemical signal that they

themselves release into the environment. As the environ-

mental concentration of the signal will be higher if many

similar cells are present, this simple mechanism allows

cells to indirectly sense population density. In this manner

a population can turn on and off metabolic functions in a

synchronized manner, which enables it to solve problems

that individual cells cannot tackle, such as colonizing habi-

tats, infecting host organisms etc.

One of the simplest QS systems is the N-acyl homoser-

ine lactone (AHL) based communication present in Gram

negative bacteria [6]. In a typical case, such as present in
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Pseudomonas aeruginosa, cells constantly produce a low

level of AHL [7, 8]. Just to take a simple hypothetical ex-

ample, if the extracellular AHL concentration exceeds a

threshold level, cells turn on the metabolically expensive

production of an enzyme. When the enzyme concentra-

tion reaches a critical level, it will digest protein nutrients

present in the environment, and the liberated amino acids

will allow cells to upgrade their metabolic activities. In

reality, there are over 70 AHL molecular signals known in

various Gram negative bacteria [9], and a typical bacter-

ium has several QS systems [10–12], which makes the ex-

perimental study of QS quite difficult. Also, not only

enzyme production but a large variety of metabolic or

regulatory functions can be activated by QS [5, 11], so

general conclusions cannot be easily reached from the

study of individual species.

It is a well-known property of AHL signalling that bac-

terial species often react to various chemical signals emit-

ted by other bacterial species [13]. From the protein

structural point of view this is not a surprise, since the

AHL binding pocket of an enzyme that can bind a particu-

lar AHL molecule may also bind a related AHL molecule,

even though in a less efficient manner [14]. As a result, a

bacterium, harbouring a certain AHL receptor molecule

will be able to respond to a variety of AHL signals of re-

lated structures. The reason and the significance of this

quite widespread phenomenon are currently unknown.

The main goal of this work is to clarify whether or not dif-

ferential sensitivity to various signals can contribute to the

maintenance of a bacterial community.

Finally, a natural but rarely asked question regarding

microbial communities refers to the coexistence of spe-

cies differing in their fitness. Namely, a typical interspe-

cies microbial community in nature harbours over ten

thousand bacterium species that must necessarily differ

in their growth rates. Still, the fittest species does not

simply outcompete the slower growing ones, but a cer-

tain number of slow-growing species are continuously

present over long periods of time [15]. One can consider

this phenomenon as the self-restraint or moderation of

the fitter species since slower growing species will not

be eliminated as one could expect from the classical

competitive exclusion principle of Gause [16]. Previously

we have shown that sharing of signals and nutrients can

in fact contribute to the stable cooperation of different

species [17] and that complex model communities can

even exhibit territorial defence [18]. Here we ask the

specific question whether or not the differential response

to the same chemical signal can be the molecular basis

of such seemingly complex concepts as self-restraint or

moderation of bacterial species.

In this work we used agent-based simulations to study

the role of multiple signal sensitivities in bacterial com-

munities. We found that differential response thresholds

provide a simple and elegant way for keeping slower

growing species within a community. Also, they can lead

to stable coexistence between antibiotics-producing and

antibiotics-sensitive cells. We hope this research can

help one to better understand the dynamics of complex

microbial communities.

Results and discussion

Modelling framework and competition outcomes

We set up competition experiments by placing randomly

an equal number of agents representing the two compet-

ing species at the beginning of a longitudinal 2D surface

“track” covered by the nutrient (see Methods). At the be-

ginning, all cell agents were in the solitary (ground)

state. When the simulation started, the cells started feed-

ing, moving randomly, dividing and producing a low

amount of diffusible communication signal (S) at a rate

corresponding to the solitary state. As the concentration

of the signal in the environment reached a certain

threshold, the corresponding cells switched to an active

state, and started to produce a public good, which we

term a cooperation factor (F) (in the example cited in

the introduction this was an enzyme). When the factor

in the environment reached a threshold concentration,

the cells switched to the swarming state i.e. they in-

creased food intake, movement, as well as the produc-

tion of signal and cooperation factor. As a result, agent

communities have been formed that proceeded along

the track. The region where signal and factor concentra-

tions are high and most cells situated is called the active

zone [19]. Agent communities were considered stable if

their population size was practically constant for at least

20 generations. The constant population size indicated

that the nutrient capacity of the environment was

reached. In other cases the communities were not able

to form viable microbiome, they either remained at the

starting point or they collapsed after a short growth

period. In previous studies we observed a few further

competition phenotypes including homogeneous and

spatially separated mosaic-like colonies [17].

With the particular agent pairs used in this study, we

observed only a few competition phenotypes, schematic-

ally shown in Fig. 1. Figure 1a shows a situation when a

population cannot grow under the given conditions. In

this case cells remain in their solitary (ground) state, con-

sume the available nutrient and then the populations

starve out when the nutrient pool is depleted. Figure 1b

demonstrates a scenario where two species can stably co-

exist. In this case, the cells form a homogeneous commu-

nity. Figure 1c shows a situation where a fitter species

with faster division outcompetes another, slower growing

one. This is a typical case of competitive exclusion [16].

The results are the same if the fitter species spends less

energy (from nutrient uptake) for communication and
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cooperation with signal and factor compounds. Finally,

Fig. 1d shows a scenario in which the fitter species (red) is

not viable in itself. This is typical in the case of cheater

phenotypes that can survive only using the signals and co-

operation factors produced by another, slower growing

species. In this case the population collapses after a short

growth phase.

Higher response threshold induces self-restraint

Let us imagine the competition of two species, species 1

and 2 that have identical parameters, for instance they

react to the signal at a threshold concentration T1. This

means that at this threshold value the cells switch to fas-

ter metabolism and faster growth. As all parameters are

equal, both populations grow at an equal rate. Now let’s

raise the response threshold of species 2 to a higher

value T2. At the beginning of the simulation, the signal

concentration in the environment is zero. As the signal

concentration starts to grow, it will first reach T1, so

species 1 will switch from a dormant, ground state to a

more active, faster growing state, while species 2 will

continue to remain in the ground state. As the signal

concentration will reach T2, species 2 will also switch to

the active state, but between T1 and T2 concentration

species 2 gives an advantage to species 1.

The previous considerations indicate that higher re-

sponse thresholds lead to decreased fitness in a certain

signal concentration range, namely between T1 and T2.

Increasing the communication signal threshold, the co-

operation factor threshold or both, the affected species

decreases its fitness, which could lead to its exclusion.

This is exactly what we saw in our simulation experi-

ments. We increased the signal threshold (Fig. 2a), the

factor threshold (Fig. 2b) or both (Fig. 2c), respectively,

Fig. 1 Competition phenotypes of two species simulations. a There is no growth if species are unable to grow under the given conditions, e.g.
they are incapable of quorum sensing; b stable coexistence of two different cell types; c exclusion of a less fit species by a fitter one; d collapse
of a community. Blue lines indicate the cell numbers of the first (in case of b, c, d WT) species and the red lines the cell number of the other
species as a function of time (in simulation steps). The small inserts show the population on the two dimensional longitudinal track in the time
points indicated by the arrows. Blue and red dots represent the positions of agents from different species
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for species 2. The populations with increased signal and

factor thresholds were viable when grown alone. In co-

cultures with wild type (WT) species 1, the latter was a

clear winner, which indicates that higher response

threshold is a disadvantage.

Differences in response thresholds can lead to stable

cooperation

As a next step let’s design a competition experiment in

which two competing species differ in their growth rates.

This is a natural scenario since it is difficult to imagine

that two species grow exactly at the same pace (note that

under the studied conditions, populations of dormant cells

do not grow). Continuing the thought experiment in the

previous section, first suppose that species 2 has a lower

growth rate. Since this species has a higher signal response

threshold, it is already at a disadvantage. Diminishing its

growth rate will further increase this disadvantage so the

picture will not change dramatically. Now suppose that

species 2 has a higher growth rate. In this case, species 2

will be at a disadvantage below its response threshold T2,

but will be at an advantage above the threshold level

(more exactly, the two species will be inactive below T1,

species 1 will grow alone between T1 and T2, and both

species will grow above T2 but species 2 will grow faster).

This situation corresponds to one of the classical defini-

tions of population equilibria, since on one side of the

threshold T2, species 2 will grow faster while on the other

side, species 1 will be the fitter one. This leads to a fluctu-

ation around an equilibrium population ratio. We used

the WT species 1 and species 2 agents from the previous

experiment to test this hypothesis. The growth rate of spe-

cies 2 was increased by decreasing its division threshold

(see Methods). While all of these species could swarm

alone, the results showed that they were capable of stable

coexistence when grown together (Fig. 2d–f ). In other

words, the sole difference between the right and left

panels is that in the right panels, species 2 divides faster –

i.e. is more fit – than species 1. This fitness difference

seems sufficient to induce a stable coexistence between

the two species. With respect to the range between T1

and T2 we note, that in our simulations, slight differences

were sufficient to create an equilibrium while in nature

the differences can be substantially higher, sometimes

more than an order of magnitude. We think that

phenomenon may be a factor underlying natural popula-

tion equilibria in bacterial communities.

Differential signal thresholds can stabilize equilibria even

between antibiotics producing and sensitive strains

“Chemical warfare” is often part of bacterial competition

scenarios. For instance, the species Chromobacterium

violaceum (Cv) emits an antimicrobial (AB) upon sens-

ing the QS signal of Burkholderia thailandiensis (Bt),

which prevents the invading Bt from penetrating the

habitat of Cv [20]. In other terms Cv eavesdrops on the

signal of Bt and starts a chemical attack as soon as the

signal of Bt reaches a threshold concentration. Previ-

ously we showed that eavesdropping provides a unilat-

eral advantage for the eavesdropping species [17]. As

signal-activated chemical attacks are widespread in the

bacterial world [21, 22], the question emerges if coexist-

ence can still be achieved by modulating the response

threshold of the eavesdropping species. To answer this

question, we set up a competition experiment wherein

the AB sensitive (ABS) species was slightly fitter than

the AB producing (ABP) species. In this case, the AB

producing cells were the clear winners (Fig. 3a). How-

ever, raising the response threshold of ABP against ABS

imposed self-restraint on the AB producer and a typical

fluctuating equilibrium emerged (Fig. 3b). The reason is

that below the response threshold, AB sensitive cells

were fitter than AB producers, while above the response

threshold the situation reversed.

Conclusions
Bacteria living in the same niche often respond to identi-

cal chemical signals [23] but have vastly different re-

sponse thresholds [15]. It is presently unknown why

such properties should be maintained during evolution.

Here we carried out computer simulations showed that

different response thresholds can lead to stable popula-

tion equilibria between competing species. The clue in

our case was that the fitter species can demean self-

restraint by switching to its metabolically active state at

a signal concentration which is higher than the response

threshold of the competing species. In such a way, the

less fit competing species will have an advantage in a

given signal or cooperation factor concentration range,

while the fitter species will have growth advantage above

that concentration range. This will give rise to popula-

tion sizes fluctuating around an equilibrium level.

Natural microbial communities rely on the stable coex-

istence of different microbial species with different fitness

values. Less fit, i.e. slower growing species can be crucial

for the entire community if they produce metabolites es-

sential for others. Keeping such less fit species is in the

interest of the entire community. A simple and plausible

method for preserving them is the use of different quorum

sensing response thresholds. Higher response thresholds

can be considered as a self-restraint mechanism of fitter

species that helps maintaining the metabolic and func-

tional repertoire of a microbiome via allowing useful but

less fit members to grow under certain circumstances.

We suppose that the origin of different response thresh-

olds is evolutionary, for instance a result of mutations

within the binding sites of quorum sensing receptors.

Cells that are capable of working together, could recruit
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Fig. 2 Competition between WT species 1 (blue) and species 2 with modified threshold values (red). a WT species 1 and higher signal threshold
(TS+) species 2, leads to exclusion of species 2; b WT species 1 and higher factor threshold (TF+) species 2, leads to exclusion of species 2; c WT
species 1 and higher signal and factor threshold (TS+ TF+) species 2, leads to exclusion of species 2; d WT species 1 and higher signal threshold
and higher fitness (TS+ TD-) species 2, leads to coexistence of species 1 and species 2; e WT species 1 and higher factor threshold and higher
fitness (TF+ TD-) species 2, leads to coexistence of species 1 and species 2; f WT species 1 and higher signal and factor threshold and higher
fitness (TS+ TF+ TD-) species 2, leads to coexistence of species 1 and species 2
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each other in the process of community formation [15], or

exclude other “incompatible” species from the commu-

nity. Another important benefit of applying different sig-

nal and factor thresholds within a community, besides the

division of work, is the faster and smoother adaptation to

changing environments. If some parameters of the envir-

onment change, the fitness of the community, optimised

to these conditions, decreases. If the community contains

identical cells, adaptation to the new conditions must be

an evolutionary process, based on mutations and natural

selection. But if the community contains different cell

populations, it can adapt through changing the population

ratios which is a much faster process that takes place on

an ecological rather than evolutionary time-scale.

Methods
Modelling framework

For studying the effects of different response thresholds,

we employed an agent-based model of quorum sensing

(QS) previously developed in our group [17, 19, 24], im-

plemented in MATLAB programming language and

using the basic parameters summarized in Additional file

1: Tables S1-S8. Briefly, this model represents bacterial

cells as computational agents that randomly move on a

2D surface. The agents consume nutrients, and invest

the energy gained in this way into producing signal mol-

ecules (S) as well as cooperation factors (F). Nutrients,

signals, cooperation factors are diffusible materials that

freely diffuse on the 2D plane. At the beginning of the

simulation the cells are placed on one end of a 2 dimen-

sional half-closed longitudinal track that is open at the

opposite end and has periodic boundary condition on its

two sides. This modelling setup corresponds to the

growth of a single dendrite of a bacterial colony placed

on an agar plate. The simulations were carried out with

our agent based model described in [17], parameters

summarized in Additional file 1: Tables S2-S3. In a typ-

ical simulation run, 1000 cells of each of the two com-

peting species were randomly placed to the beginning of

the longitudinal track, and the simulation was left to

proceed for 5000 steps (approximately 110 generations).

Models with elevated response thresholds

The key elements in our simulations are the two re-

sponse thresholds TS (signal threshold) and TF (factor

threshold) at which the models switch to another state.

We designed models with elevated response thresholds

(Table 1). The elevated thresholds were selected empiric-

ally in such a way that the difference between popula-

tions should appear within 5000 simulation steps, i.e. the

standard length of our simulation experiments. The ele-

vated values are 2–4 folds higher than the basic levels,

in nature we find much bigger differences [15]. The fit-

ness in our models is determined by the division thresh-

old, TD, which corresponds with the energy content of

the cells that allows them to divide. The models with el-

evated fitness had a lower division threshold that

allowed them to divide faster.

Antibiotics production

Antibiotic (AB) production was introduced into the

models by designing antibiotic producing (ABP) and

antibiotic sensitive (ABS) agent types capable of QS.

ABS agents are wild type-like models that are sensitive

to a diffusible antibiotic, AB. When the concentration of

AB exceeds a threshold, ABS cells fall back to the

Fig. 3 Competition between AB sensitive (ABS)(blue) and AB producing (ABP) (red) populations. Raising the response threshold (TAB) of an
antibiotic producing eavesdropping species leads to stable coexistence with the target ABS species (the members of which are activated at
threshold TR). a eavesdropping with equal signal thresholds, leads to exclusion of the eavesdropped species; b eavesdropping after raising the
threshold of the eavesdropper for foreign signal leads to coexistence between the species
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ground state i.e. they will not be viable under the given

modelling conditions. In other words, ABP cells eaves-

drop on ABS cells and attack them if the local density of

ABS cells is above a certain level. The critical parameters

in these simulations were the threshold value TR, at

which ABS cells switched to a higher metabolic state,

and TAB at which ABP cells started to produce antibi-

otics (Table 2). We tested two kinds of scenarios. In the

first one (Fig. 3a), “TAB = TR”, AB production started at

the same signal concentration at which ABS cells

switched to a higher metabolic state. In the second one

(Fig. 3b), “TAB > TR”, antibiotic production started at a

higher value, allowing ABS agents to grow before AB

production would have started. Note that in this system,

AB production can be meaningfully tested only if the

ABS cells are fitter than ABP cells. Otherwise ABS cells

are excluded even without AB action. ABS models were

made fitter by assigning a division threshold lower than

that of ABP cells (i.e. 11 instead of 12).

Reviewers’ comments
Reviewers’ report 1: Michael Gromiha, Indian Institute of

Technology Madras, India

In this work, the authors addressed a fundamental ques-

tion of bacterial communities. The stability of microbial

communities is one of the difficult questions of biology

today. Namely, communities found in various habitats are

varied, so it is not only notoriously difficult to study them

by experimental methods, but also it is not easy to pin-

point principles that are applicable to different communi-

ties. Juhász et al. chose a phenomenon known in quorum

sensing bacteria: different species react to the signal of

each other but at vastly different response thresholds. The

authors showed using generic agent-based models that the

existence of differential signal response thresholds can

contribute to the stability of bacterial communities since

population equilibria may exist in a large part of the par-

ameter space. The work is interesting. The manuscript is

well written and the figures are adequate.

Minor: The phrase “As a thought experiment” could

be deleted or rephrased.

Author’s response: Thank you for the advice, the men-

tioned part was rephrased.

Reviewers’ report 2: Sebastian Maurer-Stroh, Bioinformatics

Institute (BII), a*STAR, Singapore

Co-existence of species in bacterial communities is an in-

teresting but complex question that can be addressed in a

variety of models. The manuscript “Differential signal sensi-

tivities can contribute to the stability of multispecies bacter-

ial communities” by Juhasz et al. describes agent-based

simulations to study stability of bacterial communities com-

peting for the same resources in a 2D periodic boundary

setup. Their model includes parameters for quorum sensing

Table 1 Modified growth rate, signal and factor threshold parameters of the self-restraint experiments

Name of the model Division threshold
(TD)

Signal threshold
(TS)

Factor threshold
(TF)

Basic model, WT, (blue in Fig. 1b,c,d, Fig. 2)

WT 12 10 10

Models with elevated response thresholds (red in Fig. 2a,b,c)

TF+ 12 45 10

TS+ species 2 12 10 20

TF+TS+ species 2 12 45 20

Models with elevated response thresholds and increased fitness (red in Fig. 2d,e,f)

TF+TD- 6 45 10

TS+TD- 6 10 20

TF+TS+TD- species 2 6 45 20

Table 2 Modified growth rate and antibiotics production threshold parameters of the antibiotics production experiments

Name of the model Division threshold AB production threshold
(TAB)

Response threshold
(TR)

Model with antibiotics sensitivity (blue in Fig. 3)

ABS 11 - 10

Model with antibiotics production TAB = TR (red in Fig. 3a)

ABP 12 10 -

Model with antibiotics production TAB > TR (red in Fig. 3b)

ABP 12 30 -
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with signalling molecules and cooperation factors with a

signal threshold T(s) and factor threshold T(f) controlling

when agents switch between solitary, active and swarming

states and show that the system behaves as expected in

standard scenario. Specifically, they try to answer the ques-

tion how 2 species with differing division fitness could co-

exist when the competitive exclusion principle would sim-

ply suggest that the fitter species survives and the less fit

would die out. They propose and show that differences in

signal concentration thresholds would be a possible solu-

tion to allow for co-existence of these species. This works

because the fitter species switches of state later which gives

an advantage to the less fit species at low signal concentra-

tions. If the parameters are chosen carefully, this can result

in a homeostasis between the species. The authors note

that this would correspond to self-restraint by the fitter spe-

cies. They show a similar outcome of a stable community

for antibiotic producing vs. sensitive species if the antibiotic

is only produced above a higher response threshold. The

flow and message of the manuscript is clear. I only have

minor comments:

1) Small inserts in Figure 1, please explain what they

should show.

2) Page 4: delete “of ” in “classical of competitive”.

Author’s response: Thank you for the suggestions, the

mentioned parts were explained and corrected in the text

of the article.

Reviewers’ report 3: István Simon, Institute of

Enzymology, Hungary

The ms. of János Juhász et al. (“Differential signal sensi-

tivities can contribute to the stability of multispecies

bacterial communities”) deals with a fundamentally im-

portant question, the stability of multispecies microbial

communities. This phenomenon is hard to study by ex-

perimental methods since communities vastly differ in

terms of species composition and population ratios so

the conclusions can not be easily generalized to other

communities. The authors thus chose computer model-

ling, notably agent based models. This ms deals with a

specific question related how signal molecules can con-

tribute to the stability of a community. It is known in

the field of quorum sensing, that species present in the

same environment often react to the same signal mol-

ecule but at vastly different response thresholds. The au-

thors show that as a result, stable communities can form

in a sufficiently large part of the parameter space. I think

this is a nice and simple conclusion. I find it particularly

interesting that seemingly complex anthropomorphic

concepts such as moderation or self-restraint can be

traced back to simple physico-chemical and regulatory

notions such as response thresholds.

The authors should nevertheless make clear through-

out the manuscript that “moderation” and “self-re-

straint” are phenomenological conclusions, i.e. the

result, not the cause.

Author’s response: Thank you for mentioning this

point. It is important to note that in this paper, we would

like to highlight some potential mechanisms that could

explain the stable coexistence of different competing spe-

cies in complex microbial communities. So we state that

the differences in quorum sensing response thresholds

could be a cause of this phenomenon. “Moderation” and

“self-restraint” are anthropomorphic terms – here we

show that these behaviours can result from simple physi-

cochemical, regulatory principles. We now have made

this clear in the manuscript.

Also, I think the authors should add a paragraph re-

lated to their original question, why differential response

thresholds are present in nature. In my view, these can

be fixed by evolution, or rather formed by recruitment

on the spot, i.e. species having these characteristics will

preferentially recruit each other.

Also, the authors may want to add that differential sig-

nalling thresholds allow the community to respond by

modifying their population ratios (ecological time-scale),

which is more efficient and swift than simple collapse

whereby the community is simple “selected out” (evolu-

tionary time-scale).

Author’s response: Thank you for the important con-

siderations and thoughts about the origin and benefits of

diverse response thresholds, we now mention and discuss

them at the conclusion part of the manuscript.

Reviewers’ report 4: L. Aravind, NCBI, USA

The manuscript “Differential signal sensitivities can con-

tribute to the stability of multispecies bacterial commu-

nities” submitted by Juhász et al. addresses the question

whether or not the differential response characteristics

of bacterial species to the same quorum sensing signal

can influence the coexistence of bacterial species. Given

the importance of intra-specific biological conflicts in es-

tablishment of microbial communities obtaining con-

straints for this via theoretical models would be

particularly useful. Bacterial species that respond to an

environmental signal at a lower concentration threshold

can in principle easily outcompete others. Hence, some

of the other species may get lost from the community. If

such a species happens to carry a metabolic function

crucial to the community, the survival of the entire com-

munity will be jeopardized. However if a fitter species

responds at a higher signal concentration level, the less

fit species will still survive i.e. the metabolic repertoire

of the community will be maintained.

The manuscript is clearly written but the authors may

want to discuss the below points:
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1) The authors propose that competitive exclusion of a

less fit species that would be eliminated as per the Gause

principle is precluded by the higher threshold of signal

sensing. As the species shuttle between fitter and less fit

regimes, it may be interesting to compare their average

fitness calculated over entire the simulation period so as

to show if and how the Gause principle is violated.

Author’s response: The Gause principle is only briefly

mentioned in the paper and without explicitly mentioning

the fact of violation. Namely, in our opinion, the principle

is not violated in this system, even though the average fit-

ness values can be different. What we see (data not shown,

see also [17, 19, 24]) is spatial separation, the species with

faster division (fitter) occupy most of the swarming zone,

and gradually exclude the slower growing (less fit) species.

Nevertheless at the front region of the swarming zone the

slower growing cells have advantage, because the other spe-

cies cannot swarm there due to its higher quorum sensing

thresholds. In other terms, spatial heterogeneity is ob-

served, with the less fit species being excluded from only a

given spatial region. Spatial heterogeneity had been in-

voked as an explanation why less fit species can avoid ex-

tinction (see e.g. [25, 26]) – this seems to be the case even

in our highly simplified model system. These indicates that

spatial exclusion could be crucial for understanding the

Gause principle and the behaviour of apparently excluded

species surviving in remote niches, and it can be observed

even in simple, agent-based systems.

2) Moreover, the Gause principle was originally formu-

lated in an intraspecific context but the authors are

using models such as Chromobacter and Burkholderia

which inter-specific competition. They would want dis-

cuss the generalization of the Gause principle for such

scenarios.

Author’s response: Our models are course approxima-

tions and at this level of abstraction, intra and interspecific

contexts do not separate sharply. The existence of spatial

heterogeneity and the swarming behaviour of the colonies

also differentiate our simulation setup from the environ-

ment where Gause principle was originally applied.

3) The authors propose this “restraint” mechanism as

playing a role in survival of bacterial communities. What

would change if this mechanism did not exist? Is it con-

ceivable that such mechanisms are selected for in the

first place only in scenarios where community collapse

imposes a much greater cost than the benefit from elim-

inating the rival organism?

Author’s response: Yes, this is true and an explan-

ation is now added to the text. We note that the de-

scribed “restraint” mechanism is crucial in our

(quorum sensing driven swarming) system for the for-

mation of spatial heterogeneity and permanent coex-

istence of different species. Nevertheless community

collapse is the worst scenario here, because it leads to

a dramatic decrease in population size and an end of

swarming, so it has much greater cost than swarming

in the company of a rival organism.

It should be Gause principle? That is how the au-

thor of the original paper is spelt in English but it

was Gauze in Russian?

Author’s response: Yes, this is true. We now use the

English spelling which is more common in the scien-

tific literature.

Finally we thank all four reviewers for their work and

useful, thought-provoking comments.
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Additional file 1: Basic parameters of the simulations. (PDF 271 kb)
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