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Beáta Reiz1,2,3, Attila Kertész-Farkas1, Sándor Pongor1,4 and Michael P. Myers1,5,*
1Protein Structure and Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, 34149
Trieste, Italy, 2Laboratory of Bioinformatics, Biological Research Centre, Hungarian Academy of Sciences, H-6726
Szeged, Hungary, 3Institute of Informatics, University of Szeged, H-6720 Szeged, 4Faculty of Information Technology,
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ABSTRACT

Motivation: Identification of proteins by mass spectrometry–based

proteomics requires automated interpretation of peptide tandem

mass spectrometry spectra. The effectiveness of peptide identification

can be greatly improved by filtering out extraneous noise peaks before

the subsequent database searching steps.

Results: Here we present a novel chemical rule-based filtering algo-

rithm, termed CRF, which makes use of the predictable patterns (rules)

of collision-induced peptide fragmentation. The algorithm selects peak

pairs that obey the common fragmentation rules within plausible limits

of mass tolerance as well as peak intensity and produces spectra that

can be subsequently submitted to any search engine. CRF increases

the positive predictive value and decreases the number of random

matches and thus improves performance by 15–20% in terms of pep-

tide annotation using search engines, such as X!Tandem. Importantly,

the algorithm also achieves data compression rates of �75%.

Availability: The MATLAB source code and a web server are available

at http://hydrax.icgeb.trieste.it/CRFilter/

Contact: myers@icgeb.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Identifying proteins from the mass spectra of their proteolytic

peptides has become a standard method for analyzing complex

biological samples (Aebersold and Mann, 2003). In a typical ex-

periment, mass spectra obtained via liquid chromatography

coupled to tandem mass spectrometry (MS/MS) are compared

with theoretical spectra derived from a sequence database (Yates

et al., 1995) [for reviews, see Becker and Bern (2011), Deutsch

et al. (2008), Jacob (2010), Johnson et al. (2005), MacCoss

(2005), McDonald et al. (2004), Menschaert et al. (2010),

Nesvizhskii (2010), Nesvizhskii and Aebersold (2004),

Neumann and Bocker (2010), Noble and MacCoss (2012) and

Webb-Robertson and Cannon (2007)]. The analysis of a single

sample may require the evaluation of hundreds of thousands of

experimental spectra. Commonly these are laden with extraneous

peaks, which make peptide identification particularly difficult.

In this work, we address the filtering of preprocessed spectra

[for reviews, see Jacob (2010), Johnson et al. (2005), Mujezinovic

et al. (2006), Reiz et al. (2012) and Salmi et al. (2009)], which

consist of a series of monoisotopic peaks that are characterized

by their fragmentation mass (m/z ratio) and their intensity. The

goal of filtering is to increase the quality of the data while redu-

cing the size of the dataset under analysis. Because the analysis

capacity of instruments is constantly increasing, there is a grow-

ing need for fast and efficient filtering strategies. Briefly, filtering

methods fall into two large categories: spectrum filtering

approaches and peak filtering approaches.
Spectrum filtering approaches seek to identify low-quality

spectra based on their peculiar intensity or m/z distributions,

and subsequently exclude these spectra from further analysis.

One general strategy is to use peptide fragmentation rules to

identify high-quality spectra (Bern et al., 2007; Flikka et al.,

2006; Geer et al., 2004; Hoopmann et al., 2007; Nesvizhskii

et al., 2006; Renard et al., 2009). There are many ways to incorp-

orate peptide fragmentation rules into spectrum annotation, and

in a broad sense, all de novo algorithms and sequence tagging

algorithms use fragmentation rules.

Peak filtering approaches, meanwhile, seek to discard un-

wanted peaks from the spectra of a particular experiment. Such

unwanted peaks are identified by their low intensities and/or by

the fact that they do not obey the fragmentation rules of a given

experiment. Although technically incorrect, any peak that is

deemed superfluous for a particular data processing workflow

can be discarded from the spectrum as ‘noise’. For instance, we

can simply retain only the top 50 most intense peaks, or discard

peaks with intensities55% of the maximum intensity. A number

of laboratories have reported on the use of such classical

signal-to-noise filters that also reduce the number of peaks in a

spectrum (Geer et al., 2004; Renard et al., 2009; Xu and Freitas,

2010). The advantage of noise filtering methods is that they can

produce cleaner spectra. These can then be further analyzed with

any search engine. However, the signal-to-noise filters are typic-

ally equally destructive to all low-intensity peaks, regardless of

whether or not they follow the expected fragmentation rules.
To address this problem, we developed a set of spectral pro-

cessing filters designed to reduce the number of uninformative

peaks in peptide fragmentation spectra. The motivation is to use

the chemical rules of gas-phase peptide fragmentation (Barlow

and O’Hair, 2008; Biemann, 1990) to produce filtered spectra,

which can then be further analyzed by any search engine of*To whom correspondence should be addressed.
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choice. Importantly, the filters presented here remove peaks that

do not form b–y (a–x, c–z) pairs or are not separated by the mass

of an amino acid. In contrast to spectrum filtering methods that

use related principles for controlling spectrum quality (Bern

et al., 2004; Flikka et al., 2006; Nesvizhskii et al., 2006), our

strategy only discards peaks deemed to be uninformative,

rather than discarding entire spectra. This peak-by-peak strategy

has negligible computational costs, results in data compression

rates of �75% and a substantial improvement in the number of

the annotated spectra at the same false discovery rate (FDR)

level as compared with unfiltered data.
The article is structured as follows: Section 2 describes the data

and the general computational methods, Section 3 describes the

results (i.e. the principle, the algorithm and the tests conducted

on the method) and Section 4 contains the discussion and

conclusions.

2 METHODS

Datasets. The Jurkat dataset is an experimentally acquired set of tryptic

peptide spectra obtained from a human cell extract, collected on a

Thermo LTQ Orbitrap instrument (Kil et al., 2011). The dataset contains

5853 MS/MS spectra (charges from þ2 to þ6) and were downloaded

from Proteome Commons (https://proteomecommons.org/). UPS, a

second experimental dataset, was created from a tryptic digest of the

Universal Proteomics Standard I (Sigma) using an Applied Biosystems

4800 MALDI-TOF/TOF instrument as previously described (Bish et al.,

2008). The UPS I standard contains 50 human proteins, and our UPS

dataset contains 3368 peptide spectra. HSPP2A dataset (Glatter et al.,

2009), the largest, contains 29583 spectra (20 773 doubly, 8706 triply, 474

quadruply, 26 quintuply and 4 hexuply charged spectra) obtained with

LTQ mass spectrometer on trypsin-digested human protein phosphatise

2A system and was acquired from www.peptideatlas.org/repository/pub-

lications/Glatter2008.

Top N intensity filter. We have implemented Top N filters for a com-

parison as well, which retains the N most intense peaks (Chalkley et al.,

2005; Hansen et al., 2003). N¼ 40–100 gives good results for many

datasets. In our experiments, N was set to 50.

Spectrum identification. The raw and the filtered experimental spectrum

datasets have been annotated with X!tandem (version 2010.12.01.1),

Mascot program (version 2.2), MassMatrix (Xu and Freitas, 2010) and

InsPecT version 2012 (Tanner et al., 2005). For all search engines, the

parent and fragment ion mass tolerance were set to 0.1 and 0.3 Da, re-

spectively, for theUPSdataset; 0.03 and0.3Da, respectively, for the Jurkat

dataset and 0.1 and 0.3 Da, respectively, for the HSPP2A dataset. The IPI

human sequence database (version 3.71) (Kersey et al., 2004) was used as a

referencewithX!Tandem, InsPecT andMassMatrix.We included reversed

sequences as the decoy dataset. The ‘total peaks’ parameter in the

X!tandem program was set to 5000. Default values were used for the rest

of the parameters. Mascot was used with above parameters using the

SwissProt human database (version 2012.03).

Performance evaluation methods. The positive predictive value (PPV) is

the ratio of the matching peaks in the experimental spectra over the total

peaks [see Altman and Bland (1994)], formally

PPV ¼
#matches

#peaks
:

Filtering performance was also evaluated by the receiver operator

curve (ROC) technique as follows: a dataset (raw or filtered) was sub-

mitted to a search engine, and the identified peptides were listed in the

order of decreasing significance (increasing E-value). In this list, peptides

of the human proteome were considered positive hits and the peptides of

the decoy dataset were considered negative hits. The number of positive

hits was then plotted as a function of the number of negative (decoy) hits

by varying the decision threshold (Sonego et al., 2008). This plot yields a

monotonously increasing curve, the ROC curve, and higher running

ROC curves indicate better performance. The FDR (Storey and

Tibshirani, 2003) was calculated as the ratio of the number of the

decoy hits over the number of the positive hits at a certain threshold

t by the following formula:

FDRðtÞ ¼
#decoyðtÞ

#targetðtÞ
:

The ROC plot was used to compare methods at the level of the same

FDR value. For instance, FDR¼ 0.2% is a straight line in the ROC plot,

and its intersections with the ROC curves indicate the number of target

and decoy peaks found at the same level of FDR. FDR¼ 100% would

coincide with the diagonal x¼ y line.

All calculations and chemical rule-based filtering (CRF) algorithm

were implemented in MATLAB (version R2010b). The source code

and a web server are available at http://hydrax.icgeb.trieste.it/CRFilter/.

3 RESULTS

3.1 Principle of CRF

Given an experimental MS/MS spectrum, CRF seeks to retain

(i) high-intensity peaks that are trusted without further condi-

tions, and (ii) low-intensity peaks that are related to one of the

high-intensity peaks according to any of the following three rules:

� Mass complementation rule: the sum of the masses of a pair

of the high- and low-intensity peaks that add up to the pre-

cursor mass MHþþ 1 (e.g. b–y pairs);

� Amino acid mass distance rule: the mass difference of two

peaks equals to one of the known—native or modified—

amino acid masses (‘amino acid neighbors’); and

� Amino acid mass complementation rule: the sum of two

peaks and the precursor mass MHþ differs by one amino

acid mass (e.g. a b-ion and the amino acid neighbor of its

y-pair).

Certain types of instruments may not produce equally intense

b–y (a–x or c–z) peak pairs, for instance, triple quadrupole or

quadrupole-time-of-flight instruments tend to produce only

either b- or y-ions, thus only one member of the ion pair is vis-

ible. In this case, CRF keeps such peaks if they are either intense

enough to be considered high-intensity peaks or are separated by

a mass of an amino acid from high-intensity peaks and hence

pass the amino acid mass distance rule.

Furthermore, when amino acids lose NH3 or H2O on

collision-induced dissociation (CID) fragmentation under certain

circumstances, or when some amino acids carry post-

translational modifications, CRF keeps these peaks if they are

intense enough or they have a high-intensity amino acid neighbor

and thus pass the first or the second rule. Peaks that do not have

amino acid neighbors, such as internal fragment ions, might be

retained if they are high-intensity peaks.
The high- and low-intensity peaks are defined via user-

specified thresholds (an example is shown in Fig. 1). As an

approximation, the high- and the low-intensity peaks are defined

as the percentage of the estimated maximum peak number

(EMP). Assuming that under the conditions of CID, seven
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ions can be produced for every peptide bond (Roepstorff and
Fohlman, 1984). The number of peptide bonds can thus be

roughly calculated by dividing the precursor mass by the average
mass of amino acids, so EMP can be calculated as

EMP ¼
7 �MHþ

AAM
,

where AAM denotes the average amino acid mass, which is

calculated from a table of amino acid masses, plus the masses
of any modifications that are specified. For instance, by specify-

ing 30% as the upper threshold and 70% as the lower threshold,
we select 30% of the EMP as ‘high-intensity’ peaks and the next

30–70% as ‘low-intensity’ ones. Peaks in the 71–100% interval
are discarded. EMP is a rough estimate because it does not con-

tain irregular fragmentation events. However, we found it useful

because it does not penalize either small or large peptides.

3.2 Formal description of the CRF algorithm

Let S ¼ ½ðpj, ijÞ�
n
j¼1 denote a singly charged spectrum of n peaks,

where the pair (pj,ij) denotes the mass (m/z) pj and the intensity ij
of the jth peak, and without the loss of generality, let us assume

the peaks are ordered by the intensity in descending order, i.e.
i1 � i2 � . . . � in. Let TH and TL (TH5TL) be two user-defined

thresholds expressed in percentage of the EMP.
CRF uses TH and TL threshold parameters to calculate two

sets, the HIGH(TH) and LOW(TH, TL) that contain high- and
low-intensity peaks, by

HIGHðTHÞ ¼ pj, ij
� � �� 1 � j �

TH

100
� EMP

� �

LOWðTH,TLÞ ¼ HIGHðTLÞnHIGHðTHÞ ¼

pj, ij
� � �� TH

100
� EMP5j �

TL

100
� EMP

� �
:

CRF marks every peak in HIGH as accepted, and peaks (p,i) 2

LOW are marked only if there is a peak (q,j) 2 HIGH for which

any of the following rules are satisfied:

(i) Mass complementation rule: pþ q¼MHþþ 1,

(ii) Amino acid mass distance rule: jp� qj 2 AM,
(iii) Amino acid mass complementation rule:

jMH� jp� qj þ 1j 2 AM,

where AM denotes the set of the amino acid masses. Finally,

CRF removes the unmarked peaks from the spectrum.
CRF is made tolerant to experimental error by considering

the equations fulfilled within user-defined tolerance limits

defined in Daltons. Two such tolerance values are used: �F is

the fragment ion mass (m/z) tolerance and �P is the precursor

ion mass (m/z) tolerance. The values of �F and �P depend on the

accuracy of the mass spectrometer and should be set to approxi-

mately the same values as those used by the search engine.

However, CRF is not indifferent to the tolerance parameters.

In extreme cases of tolerance parameters, the effect of the

three chemical rules becomes insignificant, and the filtering will

be dominated by the intensity thresholds, which determine the

sets HIGH and LOW. This happens because CRF lets all

peaks pass that are in the sets HIGH or LOW if the tolerance

parameters are too loose. Conversely, if tolerance parameters are

too tight then only peaks in set HIGH will pass and peaks in

LOW will be discarded. These examples illustrate that CRF will

still keep the most intense peaks even under bad parameter

settings.
When a spectrum has a multiply charged precursor ion, all

possible charge states for fragmentation peaks are taken into

consideration, and if such a peak obeys any of the three rules,

the original peak is kept.

Fig. 1. An illustration of filtering rules [spectrum 953 from the UPS dataset (precursor mass¼ 1269.69), matching peptide from the human proteome:

HPKFEEILTR]. The high-intensity peaks, marked by red, were obtained using TH¼ 50. These peaks pass the filtering without further tests. The

low-intensity peaks, marked by blue and obtained using TL¼ 110. A blue peak is kept if it passes any of the chemical rules (i)–(iii) when paired with a red

peak. For instance, blue peak b5 2 LOW (at 639.39m/z) and read peak y5 2HIGH (at 631.44m/z) satisfy chemical rule (i) their masses add up to 1270.83,

which equals the precursor mass þ1 within 0.4 Da tolerance, so b5 will pass. Similarly, blue peak y4 2 LOW (at 760.49m/z) and red peak y5 2 HIGH

(at 631.44m/z) satisfy chemical rule (ii) because their masses differ by 129.06 Da, the mass of the Glutamic acid, within 0.4 Da tolerance, so y4 will pass.

Blue peak y4 (at 760.49m/z) and red peak b3 2HIGH (at 363.34m/z) satisfy chemical rule (iii) because their masses add up to 1123.83 Da, which is 146.86

Da apart from the precursor mass þ1, and this difference is almost exactly the mass of phenylalanine (146.91 Da). The blue peaks that do not pass any

filter (marked by a black x) are discarded. The very low-intensity peaks that are not selected to the LOW set are also discarded
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3.3 Testing the algorithm

To verify that the CRF improves the spectrum identification, we

used the Jurkat and the UPS raw spectrum datasets. UPS is a

standardized mixture of proteins, and the dataset was collected

on a MALDI-TOF/TOF instrument. The Jurkat dataset was

collected with an Orbitrap instrument, which is one of the

most commonly used instruments for proteomics. We used

X!Tandem or the MassMatrix search engines (using decoy se-

quences as described in Section 2). The filtering parameters were

as follows: TH¼ 50%, TL¼ 110% for the Jurkat dataset;

TH¼ 70%, TL¼ 120% for the UPS dataset and TH¼ 120%,

TL¼ 160% for the HSPP2A dataset (see Section 3.4).

The main hypothesis behind CRF is that selecting peak pairs

based on appropriate chemical rules will decrease the number of

random hits in a filtered spectrum as compared with a raw spec-

trum. For the first ‘proof of principle’ test, we produced a histo-

gram of the number of matching peaks between the experimental

and the theoretical spectra obtained from database searching

using X!Tandem with the UPS dataset (Fig. 2). In general, it is

convenient to divide such a histogram into a left and a right side

roughly corresponding to high and low scores. In the low-scoring

region, the distribution of experimental (target) and randomly

simulated (decoy) datasets coincides. This is a consequence of the

fact that a low number of matches frequently occurs at random

when comparing a spectrum either with target (i.e. real) or with

decoy spectra. On the other hand, in the high-scoring region, the

frequency of the target hits is higher than those of decoy hits.

Figure 2 shows that CRF filtering dramatically decreases

random hits while leaving the true hits essentially intact. This

is shown by the fact that the right-hand tail of the raw and fil-

tered datasets are essentially identical (shown by solid red and

green lines). It is also apparent that the histogram of the decoy

dataset is shifted more by CRF filtering than the histogram of

the target dataset (compare solid green with dashed green lines).

Because significance (P-value) is usually expressed as a distance

between target and decoy data, CRF filtering will naturally in-

crease the significance of peptide identifications. This finding

thus confirms that CRF removes the uninformative peaks in

the spectrum dataset and decreases the influence of random

matches.
Another way to show the efficiency of the filtering is to directly

compare PPVs (Section 2, performance measures) obtained on

filtered and raw spectra. We used the X!Tandem search engine

for spectrum annotation and calculated the number of the the-

oretical peaks that match a peak in an experimental spectrum.

The calculated PPVs were plotted as a function of the precursor

mass (Fig. 3). This figure shows a large improvement in PPV for

the CRF-filtered spectra. We think that this improvement is due

to the elimination of the uninformative peaks, which improves

the ratio of the matching (informative) peaks in a spectrum.
The filtering also improves the E-values of the X!Tandem

search results. Figure 4 compares X!Tandem E-values of raw

and CRF-filtered data on the peptide as well as on the protein

level. In this representation, each spectrum is represented by a

dot of E-value pairs (y-axis corresponds to CRF-filtered E-value

and x-axis to raw E-value). The oblique line corresponds to the

diagonal, y¼ x, so dots above the line represent spectra where

CRF filtering improves the E-values, while dots below the line

are spectra where CRF filtering had a negative effect (Fig. 4 Left).

It is apparent that the large majority of the annotated spectra

are improved at the peptide level. Protein identification data

show a similar trend (B), and here nearly all protein E-values

are improved on CRF filtering. These data are consistent with

the results shown in Figure 4 and indicate that CRF filtering

improves the significance of peptide and protein identifications.
The efficiency of CRF and Top50 intensity filtering was com-

pared using ROC analysis (Fig. 5). The raw and filtered datasets

were submitted to the X!Tandem, MassMatrix, InsPect and

Mascot search engines (using decoy sequences as described in

Section 2), and the lists of identified peptides were analyzed by

the ROC technique. The ROC curves in Figure 5 indicate that

CRF generally identified more targets than the two other

approaches.

The intersection points of the ROC curve and the straight line

of FDR¼ 0.2% show, at the same FDR level, that CRF allows

for the annotation of more spectra. Improvements in numbers

are shown in Table 1, obtained with X!Tandem at the same FDR

level. On the Jurkat dataset, X!Tandem with CRF filtering iden-

tifies 8.7 and 25.5% more spectra and 8.1 and 21.7% more

unique peptide sequences compared with Top50 and raw, re-

spectively. On the UPS dataset, the improvements achieved

with CRF are 0.5 and 18% for spectra and 1 and 14% for

unique peptide sequences compared with Top50 filtering and

raw, respectively. When the Jurkat dataset is analyzed with

X!Tandem, CRF identifies 8% more unique peptides than

Top50, and 22% more than in the raw dataset. On the UPS

dataset, the respective improvements are 1% as compared with

Top50 and 14% as compared with the raw dataset. Table 1

shows the actual number of spectra and unique peptides identi-

fied with the two filters, respectively. Roughly speaking, CRF

increased both the number of spectra and the number of the

unique peptide sequences by 15–25% as compared with unfil-

tered data and by 1–5% compared with Top50 filtered data.

3.4 Parameter selection

CRF has two adjustable threshold parameters: TH is used for

defining the high-intensity peaks that are accepted without con-

dition and TL is used for defining low-intensity peaks that are

accepted only if they form a pair with other high-intensity peaks.

We examined how the thresholds TH and TL affect the spectrum

Fig. 2. Histogram of the number of matched peaks obtained during the

database search on the UPS dataset. The data are normalized to fre-

quency values (sum¼ 1.00)
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identification results. The number of the identified peptides at

FDR¼ 0.2% are plotted in Figure 6A as a function of the

threshold parameters. We found a large plateau where the spec-

trum identification reaches its maximum. The greatest spectrum

identification was seen when TH¼ 40–90% and TL¼ 60–160%.

The large plateau illustrates the robustness of CRF because even

with a wide variety of settings, the filters are highly efficient at

retaining the informative peaks. We also plotted the percentage

of kept peaks (data compression) for various values of TH and

TL (Fig. 6B). These results indicate that CRF is relatively refrac-

tory to the values for TH and TL, except for extremely low (too

stringent) and high (too permissive) values. Therefore, we expect

that only a minimal sample-to-sample tuning will be necessary

for the use of CRF. Importantly, a substantial decrease in

Fig. 5. ROC analysis of the spectrum annotation results of the raw data and the CRF and Top50 filtered Jurkat, HSPP2A and the UPS datasets,

obtained with X!Tandem, Mascot, InsPecT and MassMatrix. These plots show independent improvements by the CRF filter on various search engines

Fig. 4. Comparison of CRF-filtered and raw UPS datasets evaluated with X!Tandem search engine. The diagram on the left side represents peptide

identifications, while the diagram on the right side shows protein identifications

Fig. 3. PPV values versus precursor mass. CRF filtering improves generally the ratio of the informative peaks among all peaks
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dataset size accompanies the improvement. Based on these

results, we chose TH¼ 50 and TL¼ 120% as the default values.

CRF has two tolerance parameters: �F is the fragment ion

mass (m/z) tolerance and �P is the precursor ion mass (m/z)

tolerance; their role is briefly discussed above (end of Section

3.2). The values of �F and �P depend on the accuracy of the

mass measurements and are to be set by the experimenter. In our

case, we used �F¼ 0.3 Da and �P¼ 0.3 Da for the UPS dataset

and �F¼ 0.3 Da and �P¼ 0.03 Da for the Jurkat dataset.

3.5 Post-translational and chemical modifications

Identification of post-translational and chemical modifications is

becoming an increasingly important part of the analysis of

proteomics data and accounting for modifications plays a fun-

damental role in MS data (Tanner et al., 2005). To handle mod-

ified peaks, CRF uses an amino acid table that is adjustable for

both complete and partial modifications. We studied this prob-

lem on the UPS dataset in which the modifications were ac-

counted for during database searching: carbamidomethylation

(57.02 Da on Cys) as a fixed modification, deamidation (0.98

Da on Asn and Gln) and oxidation (15.99 Da on Met) both as

partial modifications. In the raw dataset, X!Tandem annotated

735 spectra at FDR¼ 0.2%. When CRF was used without spe-

cifying modifications, 864 spectra were identified; when the

above modifications were applied during filtering, the number

of annotated spectra increased to 866. In other words, the in-

crease with respect to the raw data is substantial regardless of

whether the modified amino acids are correctly specified during

filtering. We checked the shifted peaks in the spectra (details not

shown) and found that the marginal increase in the number of

identified spectra (866 versus 864) was due only to a few shifted

peaks. This may appear somewhat counterintuitive; however, we

note that amino acid modifications do not change most of the

inter-peak distances on which CRF is based. So CRF will detect

spectra of peptides containing modified residues well even if the

modifications are not, or incorrectly, specified (also see

Supplementary Materials).

4 DISCUSSION

We have developed a spectrum filtering method based on the

gas-phase chemistry of peptide fragmentation and we therefore

refer to this strategy as CRF. The main goal of this filtering

strategy is to enrich for peaks that most search engines recognize

as coming from fragmented peptides. We have used a series of

rules: one based on finding b–y complementary pairs, one based

on finding peaks separated by the mass of an amino acid residue

(amino acid neighbors) and a third one that is a combination of

the first two. We found that CRF filtering improves peptide an-

notation by 15–25%, at the same FDR level, and provides an

�75% compression of the data.
We have tested the CRF on data collected with MALDI-TOF/

TOF, ion trap and Orbitrap ion trap hybrid instruments. We

have found that the CRF approach also improves the search

engine performance with respect to these data. However, data

compression and search engine performance gains with ion trap

Table 1. Search results using X!Tandem with CRF, Top50 filtered and raw datasets

Dataset CRF versus Top50 CRF versus raw

CRF only Common Top50 only CRF only Common Raw only

Spectra

Jurkat 182 1604 38 380 1406 28

UPS 57 800 52 148 709 19

Unique peptides

Jurkat 153 1316 43 306 1163 44

UPS 55 599 47 113 541 34

The numbers represent the number of the identified spectra or the number of the identified unique peptide sequences, as indicated at

FDR¼ 0.2%.

A

B

Fig. 6. CRF performance at various (TH, TL) parameter pairs on the

UPS dataset using X!Tandem using parameters described in Section 2.

(A) The number of annotated spectra, calculated at FDR¼ 0.2%.

(B) Data compression ratio (% of peaks kept)
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data were not as great as those achieved with datasets coming

from high-resolution instruments. The principle weaknesses with

ion trap data are the high mass errors, which requires the mass

tolerance to be41 Da and ambiguities in the charge states. Both

these issues cause filters to keep more extraneous peaks in the

output. However, even with ion trap data, CRF yielded �50%

data compression and a 10% increase in terms of spectrum

annotations.
CRF is most similar to sequence tagging algorithms. However,

CRF produces peak list that can be analyzed using standard

spectral matching algorithms. A number of groups have pub-

lished similar algorithms designed to perform quality control

checks on each spectra (Flikka et al., 2006; Hoopmann et al.,

2007; Nesvizhskii et al., 2006). Spectra that do not have enough

amino acid neighbors, or b–y pairs, are typically excluded from

the search, while those that pass the quality control check are

searched in total. In essence, the rule-based filters are performing

a similar quality control check. However, this control is per-

formed at the level of individual peaks, rather than complete

spectra. This removes �75% of all the peaks in the dataset

and results in 15–25% more annotated spectra at the same

FDR level.
The BYONIC search engine uses a similar strategy, where

lookup peaks are extracted from spectra and then searched

using a custom algorithm (Bern et al., 2007). Not only does

our strategy differ in the rules that are used to select peaks,

but we output the selected (and in a separate file, the discarded)

peaks in the MASCOT Generic Format (mgf). Searching with

the discarded peaks resulted in no legitimate peptide identifica-

tions, which indicates the rule-based filters are efficient at retain-

ing the informative peaks and removing noise peaks.
Geer et al. (2004) and Renard et al. (2009) come close to using

CRF, in that they apply their Top N filter within a set window

surrounding the most intensive peaks. The rational for this fil-

tering is that a true peak should have no more than one true

neighbor within 57 Da (the mass of the smallest amino acid),

which in the case of a b-ion would be a y-ion (Geer et al., 2004).

We have purposefully omitted this type of strategy because the

small neutral losses of water and ammonia are often helpful in

interpreting spectra and the a-type ion is particularly useful in

identifying the b-ion series (Bern and Goldberg, 2006).

The MASCOT search engine uses a different approach to

spectral filtering. MASCOT initially searches with a restricted

set of high-intensity fragment ions and then iteratively repeats

the search using the less intense peaks, until it is clear that the

results are no longer being improved. This is incredibly effective

at finding the best set of peaks in a spectrum, but it is not com-

putationally efficient and does not allow for data compression.
Unfortunately, the current batch of de novo and sequence tag-

ging search algorithms do not allow the output of the peaks they

select to be analyzed. Many of these programs use sophisticated

peak picking algorithms and they are likely to produce similar, or

even greater, improvements than seen with the chemical

rule-based filters (Bern et al., 2007; Tanner et al., 2005).

However, one advantage of using a simpler algorithm is that it

is relatively fast. For example, it takes only 2.8 s to filter 1000

spectra (347 821 peaks) on a PC [with a 3GHz Intel Core2 pro-

cessor (Q6850, 3.00GHz, 8 GB RAM) running under Fedora

release 8 Linux operating system]. The time estimate does not

include input/output operations.
Because CRF efficiently extracts the peaks coming from pep-

tide fragmentations, PPV and the expectation value of the spec-

tra are increased (Figs 3 and 4, respectively), while the number of

random matches is reduced (Fig. 2). Interestingly, the best scor-

ing matches from the unfiltered data typically do not improve as

much as more marginal spectra. We think this is largely owing to

the fact that the best scoring matches may leave little room for

further improvement. The use of the chemical rule-based filters

greatly improved the performance of the tested search algorithms

as has been shown by ROC analysis (Fig. 5).

CRF is easy to use and its performance compares favorably

with the filters based solely on signal-to-noise or raw intensity

measures. We hope this approach will be useful for the analysis

of large-scale proteomics data.
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Pázmány University was partially supported by NKTH grants

TET_10-1-2011-0058, TAMOP-4.2.1.B_11/2/KMR-2011-0002
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