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Abstract— Drug combinations are frequently used in treating
complex diseases including cancer, diabetes, arthritis and hy-
pertension. Most drug combinations were found in empirical
ways so there is a need of efficient computational methods. Here
we present a novel method based on network analysis which
estimates the efficacy of drug combinations from a perturbation
analysis performed on a protein-protein association network.
The results suggest that those drugs are likely to form effective
combinations that perturb a large number of proteins in common,
even if the original targets are found in seemingly unrelated
pathways.

I. INTRODUCTION

In the past few decades the number of new registered drugs
has fallen much below the expectations despite novel technolo-
gies and growing investment in this area [1], [2]. Drugs de-
signed by one drug - one target drug design strategy often fail
at phase II or phase III of clinical trials not only because their
side effects but also because of their insufficient therapeutic
effects [1]. The latter problem is often attributed to the well-
known robustness of biological systems against various kind of
perturbations such as toxins, chemical compounds, mutations
[2]. For instance, biological pathways are often redundant,
diverse and modular as well as are rich in regulatory loops that
can compensate the effect of perturbations. Multitarget drugs
or drug combinations offer intriguing possibilities as they
attack biological systems at multiple points which decreases
the chances of compensatory effects. Simply put, a multiple
attack makes the regrouping of resources more problematic.
Ágoston et al. showed that multiple but partial knockout of
targets is more efficient than a single but complete knockout
[3]. In addition, drug combinations are known to have lower
toxicity and higher therapeutic selectivity [4]. One is tempted
to argue that multitarget drugs and drug combinations are a
promising paradigm for drug development, the question is how
the growing body of various databases can be utilized for
this purpose [1], [5]. Even though the number of approved
drug combinations is increasing, most of these were found by
experience and intuition rather than in silico predictions [6].
Several experimental methods, even high throughput methods
have been developed for measuring the efficiency of drug
combinations [7]. This kind of exhaustive search may prove
impractical, Wong et al. used a stochastic search algorithm to

Fig. 1. The network-interaction hypothesis. The effect of two drugs (Drug1,
Drug2) first reaches their imminent targets (arrows) and the effect will
propagate to network neighborhoods (subnetworks) indicated in red and
green, respectively. The targets in the overlap are affected by both drugs,
and we suppose that drugs affecting a large number of common targets will
increase the effects of each other [12].

find the best combinations [8]. Yang et al. used differential
equations to find a perturbation pattern that can return the
system to a normal state from a disease state [9]. A common
feature of these methods is that they require a very large num-
ber of experiments as well as a deep knowledge of the kinetic
parameters of the pathways. Other methods use data mining
algorithms to integrate pharmacological and network data [10],
[11]. In this paper we present a novel drug combination
prediction algorithm which is based on the assumption that
the perturbations generated by the drugs propagate through
the possible interactions between proteins and that drugs
perturbing a large number of proteins in common can form
effective combinations.

II. METHOD AND EXPERIMENTAL DESIGN

A drug molecule affects its targets by various mechanisms
including inhibition and activation. As the proteins are linked
by complex networks of interactions, we can suppose that
perturbation on a single protein will also propagate within the
network. The propagation of an effect within a network can
be described by random walk or diffusion models (Figure
1). The underlying – and admittedly speculative – hypothesis
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is that one compound may not sufficiently reach the critical
targets, but two pharmacons have greater chance. Our basic
assumption is that the existing protein interaction network
can provide a basis to find the proteins or genes perturbed
by drug combination. In other words, we consider a drug
combination effective if the network neighborhoods of the
constituent pharmacons overlap (Figure 1). In order to find the
commonly affected proteins, we use the PageRank algorithm
[13], which has been successfully used to prioritize disease
candidate genes [5], [14]. In this paper we only consider binary
combinations. The interaction network is a graph G(V,E)
where V , E are the set of nodes and edges, respectively. In
our case the nodes represent genes or proteins, and the edges
are the associations or interactions between them. The edges
may have a weight, which can be interpreted as an association
strength. Let A be the adjacency matrix of the graph. The
element aij is the weight of the edge between node i and j, if
there is no edge then it is 0. One could define a random walk
on that graph by rescaling the edges to transition probabilities.
Let M be a stochastic matrix of the graph G(V,E), then mij

is the probability of going to node j from node i.

M = D−1A

where D is a diagonal matrix:

D = diag(d1, d2, . . . , dN ) (1)

where di =
∑|V |

j=1Aij .

P k+1 =MTP k = (MT )kP 0

where P k is a probability distribution, so pki is the probability
of being at node i in the step k. P 0 is the initial probability
distribution vector, which are the probabilities of starting the
random walk at a given a node.

a) PageRank: PageRank with prior [13] is a modified
random walk, where in each step the random walker jumps
back to one of the initial nodes or continues the traveling
with a certain probability.

P (i+1) = (1− α)
(
MTP (i)

)
+ αP 0 (2)

p0i =

{
1
|NT | , if the protein i is drug target

0, otherwise
(3)

where NT is the number of drug targets.

A. Randomizations and the network neighborhood of drugs

In protein interaction network there are nodes which are
more central, i.e. have a higher degree, and are more likely
to be reached by chance. In order to avoid this bias, ran-
domization procedure was applied to estimate the statistical
significance of each gene [15]. If we have p-values then we
can define the set of drug affected proteins (DAPs) as follows:

DAP = {vj |vj ∈ V, pj < 0.05} (4)

B. Measuring the interaction strength

We assumed that the sets of DAPs of the interacting drugs
are largely overlapping, which is measured by the Jaccard
coefficient. It is 1 if the two sets are identical and 0 if they
are disjunct.

J(DAPi, DAPj) =
|DAPi ∩DAPj |
|DAPi ∪DAPj |

, (5)

If two drugs share targets or target pathways, then J will be
near to 1.

C. Enrichment analysis of interaction causing proteins

For the characterization of the affected proteins we used the
concept of Gene Set Enrichment Analysis (GSEA) [16], [17]
wherein the goal is to find a common pattern (for instance,
most of the genes are parts of the same pathway). The standard
approach is based on hypergeometric distribution which has
the disadvantage of disregarding the information about how
much a given protein is affected by the drug, rather it simply
uses the fact that it is affected or not. Instead, we used a
modified version of the GSEA which is based on Kolmogorov
- Smirnov statistics and predefined function sets. The original
method was developed for microarrays where the correlation
between the expression of a gene and a phenotype under
study is measured [17]. However, the smaller the p-value is
the more affected the proteins are, so it can be seen as an
anti correlation measure, thus it should be converted into a
correlation like measure ri. Formally,

ri =
log(pi)

log( 1
NR

)
(6)

where NR is the number of randomization ( 1
NR

is the possible
smallest non-zero p-value). The enrichment score of a gene
set S (ES(S)) is computed as described in the original paper
[17]. ES(S) is large if the set members have low p-values.
To assign a statistical significance to the gene set a similar
randomization procedure was used, followed by a t-test. In
the case of drug combinations ri = 0 if the ith protein is
missing from the sets of the DAP s of the components, and
pi was the product of the p-values of the component drugs.
The gene sets were downloaded from the official website of
Molecular Signatures Database (MSigDB) (retrieved 11-01-
2013). For the experiments we used the C2 - CP (canonical
pathways) datasets. We also used the gene ontologies (biolog-
ical process, cellular component, molecular function), which
were downloaded from the official site of GO [18] (retrieved
11-01-2013).

D. Description of the experiments

All the algorithms were implemented in MATLAB 2012a.
The used network was STRING 9.0 [19] and the drug combi-
nation was downloaded from the drug combination database
[20]. The drug target data were taken from the STITCH [21]
and DrugBank [22] databases.
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1) String: STRING (Search Tool for the Retrieval of
Interacting Genes) is one of the largest integrated protein
interaction databases. The links between the proteins are
“associations” (among them several indirect ones) – rather than
simple physical interactions. In our experiment we used only
these combined interactions and confidences. Only the human
proteins and their combined associations were considered.

2) Drug combination database (DCDB): The known drug
combination dataset was downloaded from the drug combi-
nation database [20] in sql dump file format. Y. Lie et al.
[20] classify the drug combinations into two classes - phar-
macodynamic and pharmacokinetic interactions - based on the
underlying molecular mechanism on action. Pharmacokinetic
interactions are those in which one component has an effect
on how the other component(s) are absorbed, distributed,
metabolized and excreted. Pharmacodynamic interactions are
on the other hand those wherein all individual drugs act on
the same target or on different targets in the same pathway,
on different targets in related pathways, different targets in
cross-talking pathways or different targets in pathways of yet
unknown relations.

3) Experiments: Since a low number of true negative,
unsuccesful DCs is available, we used artificial or random
drugs for control purposes. As it was mentioned earlier the
drugs’ DAP depends on the number of drug targets NT , the
propagation parameter α, and the number of steps taken by
the random walker (k). In our experiment we chose k = 2 and
α = 0.5 based on the gene prioritization experience [14]. We
used the AUC (area under roc curve) for measuring the rank-
ing performance [23]. For each parameter combination 300
random drugs and their corresponding DAPs were generated
and computed. Then the true combinations were compared
to 99 random drugs (resampled from the 300 artifical drugs)
and an AUC value was optained. For negative control we used
random drugs against random drugs (the expected AUC is 0.5).
We calculated an average AUC and an average control AUC
from hundred repetitions.

III. RESULTS AND DISCUSSION

Table I shows the average results of the different DC
categories. As expected, the randomly generated AUCs are
around. It is not surprising that drug pairs affecting the same
protein or the same pathway have high AUC values. It is
conspicuous however, that some drug pairs having target
proteins in unrelated pathways also have high scores (avg.
AUC=0.9106), which may point to combinations worthwhile
to test experimentally. The high AUC value for the phar-
macokinetical interactions is also unexpected, however, the
sample size is small (avg number of DCs is 5) so far
reaching conclusions can not be made. Table II presents the
enrichment analysis results of the combination prednisolone
(PubChem: CID 5755) and dipyridamole (PubChem: CID
3108) (DC00457 - AUC=0.9942). This drug combination was
suggested to have an anti-inflammatory effect by inhibiting in-
flammatory mediators [24]. One of the most enriched pathways
is the CD28 dependent VAV1 pathway that has an important

role in the development of T-cells. Other enriched pathways
are also related to cell development and the regulation of cell
cycle in immune cells such as the ARF pathway or e2f enabled
inhibition of pre-replication complex formation.

TABLE I
Identification of experimentally validated drug combinations using

neighborhood overlap measures.

Drug combination categories1 avg. AUC2 avg. r. AUC3

Pharmacodynamic categories:

Different targets of related pathways 0.8764 (137) 0.5003

Different targets of the same pathway 0.9401 (20) 0.5033

Different targets of unrelated pathways 0.9106 (83) 0.4974

Pharmacokinetic categories:

Same target 0.9907 (17) 0.4948

Distribution 0.8654 (8) 0.5033

Excretion 0.5802 (6) 0.5022

Metabolism 0.8615 (9) 0.5061
1 Drug combination categories defined in the Drug Combination Database

[20].
2 AUC was calculated from a ranked list of network overlap measures, each list

containing one validated combination and 99 random combinations, carried
out in 300 repetitions as described in the text.

3 Random Average Values were calculated in an analogous manner from
ranked lists containing one selected random combination and 99 other
random combinations. The number of values used to calculate the average
is given in parenthesis. Note that the values are close to the theoretically
expected value of 0.5.

A. Limitations of the method

The main limitation of the method is that current network
databases only report the intensity of the interaction but often
do not report the nature of the interactions i.e. whether or
not it is synergetic, antagonistic or additive. Neither do they
allow one to determine whether the pathways affected by
DC components are up or downregulated, or what the actual
molecular mechanism is. Because of the scarceness of the
available information, the scope of the method will remain
limited, and the results can only be regarded as prediction
that need to be confirmed by experiment.

IV. CONCLUSIONS

In the paper we presented a network based strategy to pre-
dict efficient drug combinations based on the hypothesis that
pharmacons generate a perturbations that propagate through
the network. We assume that drugs that perturb a large number
of proteins in common can make efficient combinations, and
that the number of jointly perturbed proteins can be estimated
by the Jaccard coefficient. A modified gene set enrichment
method was used for explaining how the therapeutic effect of
the drug combination may emerge since the proteins which
are affected by the individual components are known. For
testing the hypothesis we used the drug combination database
which contains several hundreds of known drug combinations.
The method has some limitations, for instance the information
included in current protein interaction databases does not allow
one to predict whether a drug interaction is synergistic or
antagonistic.
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TABLE II
List of pathways significantly perturbed by both prednisolone and

dipyridamole1 .

Pathway name2 p-value3

DCC mediated attractive signaling 0.00023906

SEMA3A-Plexin repulsion signaling by inhibiting
Integrin adhesion 0.00056432

CD28 dependent Vav1 pathway 0.00294221

CDC6 association with the ORC:origin complex 0.00409331

Xenobiotics 0.00416038

Na Cl dependent neurotransmitter transporters 0.00437152

Hyaluronan Metabolism 0.00555056

E2F-enabled inhibition of pre-replication complex
formation 0.00572520

Activation of Rac 0.00598630

Linoleic acid metabolism 0.00768036

Transport of organic anions 0.00780610

ARF pathway 0.00783049
1 The proteins significantly perturbed by both drugs were mapped to the

canonical pathways of the Molecular Signatures Database (MSigDB)
[17] by gene set enrichment analysis as described in the text. Only
those pathways were enriched that have at least 5 but maximum 200
elements [17].

2 Pathway names are taken from the MSigDB version 3.1.
3 P values denote the probability for a given pathway occurring at

random, calculated as described in the text.
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